
Graph Engine Service

User Guide

Date 2024-11-30

Contents

1 GES Overview... 1

2 Permissions Management... 2
2.1 Creating a User.. 2
2.2 Policy Permissions... 3
2.2.1 Policy.. 4
2.2.2 System-Defined Policies...4
2.2.3 Custom Policies... 6
2.3 Role Permissions.. 8

3 Metadata Operations... 13
3.1 Graph Data Formats.. 13
3.1.1 Static Graph... 13
3.2 Importing a Metadata File...17
3.2.1 Preparing Metadata..17
3.2.2 Importing Data From a Local Path or OBS.. 17
3.3 Creating a Metadata File... 18
3.4 Copying a Metadata File.. 19
3.5 Editing a Metadata File.. 20
3.6 Searching for a Metadata File.. 20
3.7 Deleting a Metadata File... 20

4 Creating Graphs... 22
4.1 Methods to Create a Graph...22
4.2 Creating a Custom Graph.. 22
4.3 Creating a Dynamic Graph.. 27
4.4 Starting a Graph.. 27
4.5 Stopping a Graph.. 28
4.6 Accessing Graphs.. 28
4.7 Importing Incremental Data... 28

5 Managing Graphs.. 31
5.1 Graph Management Overview... 31
5.2 Viewing a Failed Graph... 31
5.3 Backing Up and Restoring Graphs.. 32
5.3.1 Backing Up a Graph..32

Graph Engine Service
User Guide Contents

2024-11-30 ii

5.3.2 Restoring a Graph... 33
5.3.3 Deleting a Backup... 33
5.3.4 Exporting a Backup to OBS.. 34
5.3.5 Importing a Backup from OBS..35
5.4 Upgrading a Graph... 35
5.5 Exporting a Graph...36
5.6 Restarting a Graph... 37
5.7 Resizing a Graph... 37
5.8 Expanding a Graph... 38
5.9 Binding and Unbinding an EIP... 38
5.10 Clearing Data... 39
5.11 Deleting a Graph.. 39
5.12 Viewing Monitoring Metrics... 40
5.13 Querying Schema... 41

6 Accessing and Analyzing Graph Data...43
6.1 Graph Editor... 43
6.2 Accessing the GES Graph Editor.. 51
6.3 Dynamic Graphs.. 51
6.3.1 Timeline.. 51
6.3.2 Community Evolution.. 52
6.3.3 Temporal BFS.. 54
6.3.4 Temporal Paths...56
6.4 Graph Exploration... 58
6.5 Multi-Graph Management (Database Edition).. 61
6.6 Adding Custom Operations... 63
6.7 Editing Schema.. 63
6.8 Visual Query... 66
6.9 Gremlin Query... 71
6.10 Cypher Query... 75
6.11 DSL Query... 77
6.12 Analyzing Graphs Using Algorithms.. 78
6.13 Analyzing Graphs on the Canvas.. 79
6.14 Graph Display in 3D View..81
6.15 Filter Criteria.. 82
6.16 Editing Properties... 82
6.17 Statistics Display... 83
6.18 View Running Records.. 84
6.19 Viewing Query Results.. 84

7 Viewing Graph Tasks.. 87
7.1 Graph Overview...87
7.2 Task Center..89
7.2.1 Management Plane Task Center.. 89

Graph Engine Service
User Guide Contents

2024-11-30 iii

7.2.2 Service Plane Task Center... 90
7.3 Managing Connections... 91

8 Configuring Permissions.. 93
8.1 Configuring Granular Permissions.. 93
8.2 User Groups.. 94
8.3 User Details... 95

9 O&M Monitoring and Alarm Reporting...96
9.1 Monitoring Metrics... 96
9.2 Graph Instance O&M Monitoring... 100
9.3 Monitoring.. 103
9.3.1 Nodes.. 103
9.3.2 Performance..106
9.3.3 Real-Time Queries.. 107
9.3.4 Historical Queries..107
9.4 Monitoring Clusters Using Cloud Eye.. 108

10 Algorithms.. 119
10.1 Algorithm List.. 119
10.2 PageRank.. 123
10.3 PersonalRank... 124
10.4 K-core... 126
10.5 K-hop.. 126
10.6 Shortest Path... 128
10.7 All Shortest Paths... 130
10.8 Filtered Shortest Path... 130
10.9 SSSP.. 131
10.10 Shortest Path of Vertex Sets.. 132
10.11 n-Paths.. 133
10.12 Closeness Centrality.. 134
10.13 Label Propagation... 135
10.14 Louvain.. 137
10.15 Link Prediction.. 138
10.16 Node2vec.. 139
10.17 Real-time Recommendation.. 140
10.18 Common Neighbors..142
10.19 Connected Component.. 143
10.20 Degree Correlation.. 143
10.21 Triangle Count.. 144
10.22 Clustering Coefficient... 145
10.23 Betweenness Centrality... 145
10.24 Edge Betweenness Centrality.. 147
10.25 Origin-Destination Betweenness Centrality... 149

Graph Engine Service
User Guide Contents

2024-11-30 iv

10.26 Circle Detection with a Single Vertex... 151
10.27 Common Neighbors of Vertex Sets... 151
10.28 All Shortest Paths of Vertex Sets..152
10.29 Filtered Circle Detection.. 154
10.30 Subgraph Matching.. 155
10.31 Filtered All Pairs Shortest Paths... 156
10.32 Filtered All Shortest Paths.. 158
10.33 TopicRank... 159
10.34 Filtered n-Paths.. 160
10.35 Temporal Paths... 161

Graph Engine Service
User Guide Contents

2024-11-30 v

1 GES Overview

Graph Engine Service (GES) facilitates query and analysis of multi-relational graph
data structures. It is particularly well suited for scenarios requiring analysis of rich
relationships, including social network analysis, marketing recommendations,
social listening, information distribution, and fraud detection.

This document describes how to operate and analyze graph data on the GES
management console.

Graph Engine Service
User Guide 1 GES Overview

2024-11-30 1

2 Permissions Management

2.1 Creating a User
If you need to assign different permissions to employees in your enterprise to
access GES resources, Identity and Access Management(IAM) is a good choice for
fine-grained permissions management.

With IAM, you can:

● Create IAM users for your employees within your account based on your
company's organizational structure. This allows each employee to have their
own security credentials and access to GES resources.

● Grant users only the permissions required to perform a given task.
● Entrust an account or cloud service to perform professional and efficient O&M

on your GES resources.

If your account does not need individual IAM users, you may skip over this section.

Permission Type

Type
● Roles: A type of coarse-grained authorization mechanism that defines

permissions related to user responsibilities. There are only a limited number of
roles. When using roles to grant permissions, you need to also assign
dependency roles. However, roles are not an ideal choice for fine-grained
authorization and secure access control.

● Policies: A type of fine-grained authorization mechanism that defines
permissions required to perform operations on specific cloud resources under
certain conditions. Policies allow for more flexible permissions control than
roles. They allow you to meet requirements for more secure access control.
For example, you can grant GES users only the permissions for managing a
certain type of cloud servers.

NO TE

GES ReadOnlyAccess is a policy.

Graph Engine Service
User Guide 2 Permissions Management

2024-11-30 2

Procedure

This section describes how to use a group to grant permissions to a user. Figure
2-1 shows the process.

Figure 2-1 Granting GES permissions

1. Create a user group and assign permissions.

Create a user group on the IAM console, and assign the GES ReadOnlyAccess
policy to the group.

2. Create a user and add it to a user group.

Create a user on the IAM console and add the user to the group created in
step 1.

3. Log in as the user you created and verify permissions.

Log in to the management console using the user your created and verify the
user permissions.

– Choose Service List > Graph Engine Service to enter the GES
management console, and click Create Graph in the upper right corner
to create a graph. If you cannot create one, the GES ReadOnlyAccess
policy has taken effect.

– Choose any other service in Service List. If a message appears indicating
that you have insufficient permissions to access the service, the GES
ReadOnlyAccess policy has taken effect.

2.2 Policy Permissions

Graph Engine Service
User Guide 2 Permissions Management

2024-11-30 3

2.2.1 Policy
IAM supports both system-defined and custom policies.

System-defined Policies
System-defined policies cover various common actions of a cloud service. System-
defined policies can be used to assign permissions to user groups, but they cannot
be modified.

The system-defined policies for GES include GES FullAccess, GES Development,
and GES ReadOnlyAccess. These policies are recommended as they can cover
most of the role assignments your will need in most scenarios. For details, see GES
System-defined Policy.

Custom Policies
If the supplied system policies are unable to meet your needs, you can create
custom policies for more refined control. You can create custom policies in the
visual editor or using a JSON editor. For details, see GES Custom Policy.

2.2.2 System-Defined Policies

Table 2-1 GES system-defined policies

Policy Name Description

GES FullAccess Permissions for all operations on GES, including creating,
deleting, accessing, and updating graphs.
NOTE

● Users with the permissions of this policy also need the following
policy permissions granted: Tenant Guest, Server
Administrator, and VPC Administrator.

● To use resources stored on OBS for other services, you need the
OBS OperateAccess permission. OBS is a global service. You can
find the corresponding OBS policy in the Global service project
scope.

GES Development Operator permissions for all operations except creating,
deleting, resizing, and expanding graphs.
NOTE

● To use resources stored on OBS for other services, you need the
OBS OperateAccess permission. OBS is a global service. You can
find the corresponding OBS policy in the Global service project
scope.

GES
ReadOnlyAccess

Read-only permissions for viewing resources, such as
graphs, metadata, and backup data.
NOTE

To use resources stored on OBS for other services, you need the
OBS OperateAccess permission. OBS is a global service. You can
find the corresponding OBS policy in the Global service project
scope.

Graph Engine Service
User Guide 2 Permissions Management

2024-11-30 4

NO TE

It takes about 13 minutes for an OBS role to take effect after being applied to a user or
group. A policy takes about 5 minutes.

Table 2-2 Common operations supported by each system-defined policy

Operation GES
FullAccess

GES
Development

GES
ReadOnlyAcc
ess

Resource

Querying the
graph list

Yes Yes Yes -

Querying graph
details

Yes Yes Yes graphName

Creating graphs Yes No No graphName

Accessing graphs Yes Yes No graphName

Stopping graphs Yes Yes No graphName

Starting graphs Yes Yes No graphName

Deleting graphs Yes No No graphName

Importing
Incremental data
to graphs

Yes Yes No graphName

Exporting graphs Yes Yes No graphName

Clearing graphs Yes Yes No graphName

Upgrading
graphs

Yes Yes No graphName

Resizing a Graph √ No No graphName

Expanding a
Graph

√ No No graphName

Restarting a
Graph

√ Yes No graphName

Binding EIPs Yes Yes No graphName

Unbinding an EIP Yes Yes No graphName

Querying
backups of all
graphs

Yes Yes Yes -

Querying
backups of a
graph

Yes Yes Yes -

Adding backups Yes Yes No backupName

Graph Engine Service
User Guide 2 Permissions Management

2024-11-30 5

Operation GES
FullAccess

GES
Development

GES
ReadOnlyAcc
ess

Resource

Deleting a graph
backup

Yes Yes No backupName

Querying the
metadata list

Yes Yes Yes -

Querying
metadata

Yes Yes Yes metadataNa
me

Verifying
metadata

Yes Yes No -

Adding metadata Yes Yes No metadataNa
me

Deleting
metadata

Yes Yes No metadataNa
me

Querying task
statuses

Yes Yes Yes -

Querying the
task list

Yes Yes Yes -

Configuring fine-
grained
permissions

√ Yes No -

Configuring user
groups

√ Yes No -

Importing IAM
users

√ Yes No -

Viewing user
details

√ Yes Yes -

2.2.3 Custom Policies
In addition to the system-defined policies of GES, you can also create your own
custom policies.

You can create custom policies using the visual editor or by editing a JSON file:

● Visual editor: Just select the relevant cloud services, actions, resources, and
request conditions. You do not need to understand policy syntax.

● JSON: You can create a policy using a JSON file or edit the JSON file for an
existing policy.

Graph Engine Service
User Guide 2 Permissions Management

2024-11-30 6

Examples
● Example 1: Allowing users to query and operate graphs

{
 "Version": "1.1",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ges:*:get*",
 "ges:*:list*",
 "ges:graph:operate"
]
 }
]
}

● Example 2: Preventing graph deletion
A deny policy must be used in conjunction with other policies to take effect. If
the policies assigned to a user contain both "Allow" and "Deny", the "Deny"
permissions take precedence over the "Allow" permissions.
If you need to assign the GES FullAccess policy to a user but also forbid that
user from deleting graphs, you can create a custom policy that blocks graph
deletion, and then assign both policies to the group the user belongs to. The
user will be granted full access based on the system policy, but the custom
policy will then override the permission allowing graph deletion. The
following is an example of a deny policy:
{
 "Version": "1.1",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "ges:graph:delete"
]
 }
]
}

● Example 3: Authorizing users to perform operations on graphs whose name
prefix is ges_project (ges_project names are case insensitive) and access the
graph list
{
 "Version": "1.1",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ges:graph:create",
 "ges:graph:delete",
 "ges:graph:access",
 "ges:graph:getDetail"
],
 "Resource": [
 "ges:*:*:graphName:ges_project*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ges:graph:list"
]
 }
]
}

Graph Engine Service
User Guide 2 Permissions Management

2024-11-30 7

● Example 4: Authorizing users to operate only some graph resources, but
allowing them to view all resources
The policy consists of the following two parts:
– Part 1: Authorizing users to perform operations on resources whose name

prefix is ges_project. The resources include graphs and backups.
– Part 2: Authorizing users to query the graph, backups, tasks, and

metadata lists, and view job details
{
 "Version": "1.1",
 "Statement": [
 {
 "Action": [
 "ges:backup:delete",
 "ges:graph:access",
 "ges:graph:operate",
 "ges:graph:delete",
 "ges:graph:create",
 "ges:backup:create",
 "ges:graph:getDetail"
],
 "Resource": [
 "ges:*:*:backupName:ges_project*",
 "ges:*:*:graphName:ges_project*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "ges:graph:list",
 "ges:backup:list",
 "ges:jobs:list",
 "ges:metadata:list",
 "ges:jobs:getDetail"
],
 "Effect": "Allow"
 }
]
}

2.3 Role Permissions
Roles can be used for fairly coarse-grained permissions control. They grant service-
level permissions based on user responsibilities. GES does not support custom
roles. The following system roles are available.

Table 2-3 System roles

Role Name Description

Tenant Guest Regular tenant users
● Permissions: querying GES resources
● Scope: project-level service

Graph Engine Service
User Guide 2 Permissions Management

2024-11-30 8

Role Name Description

GES Administrator GES administrator
● Permissions: performing any operations on GES

resources
● Scope: project-level service

NOTE
If you have the Tenant Guest, Server Administrator, and
VPC Administrator permissions, you can perform any
operations on GES resources. If you do not have the Tenant
Guest or Server Administrator permission, you cannot use
GES properly.
● If you need to bind or unbind an EIP, you need the

Security Administrator permissions to create agencies.
● If GES needs to interact with OBS, for instance, when

creating and importing data, OBS permissions are
required. For details, see Common GES operations
supported by each OBS policy. When granting OBS
permissions, specify the permission scope as global service
resources.

GES Manager GES manager
● Permissions: performing any operations on GES

resources other than creating, deleting graphs, resizing,
and expanding graphs

● Scope: project-level service
NOTE

If you have both Tenant Guest and Server Administrator
permissions, you can perform any operations on GES
resources except for creating and deleting graphs. If you do
not have the Tenant Guest permission, you cannot use GES
properly.
● If you need to bind or unbind an EIP, you need the

Security Administrator and Server Administrator
permissions.

● If GES needs to interact with OBS, for instance, when
importing data, OBS permissions are required. For details,
see Common GES operations supported by each OBS
policy. When granting OBS permissions, specify the
permission scope as global service resources.

GES Operator Regular GES users
● Permissions: viewing and accessing GES resources
● Scope: project-level service
NOTE

● If you have both the GES Operator and Tenant Guest
permissions, you can view and access GES resources. If you do
not have the Tenant Guest permissions, you cannot view
resources or access graphs.

● To interact with OBS, for instance, to view the metadata, you
need the OBS permissions. For details, see Common GES
operations supported by each OBS policy.

Graph Engine Service
User Guide 2 Permissions Management

2024-11-30 9

Table 2-4 Common GES operations supported by each role

Operation GES
Administrator

GES Manager GES
Operator

Tenant
Guest

Creating
graphs

Yes No No No

Deleting
graphs

Yes No No No

Querying
graphs

Yes Yes Yes Yes

Accessing
graphs

Yes Yes Yes No

Importing
data

Yes Yes No No

Creating
metadata

Yes Yes No No

Viewing
metadata

Yes Yes Yes Yes

Copying
metadata

Yes Yes No No

Editing
metadata

Yes Yes No No

Deleting
metadata

Yes Yes No No

Clearing data Yes Yes No No

Backing up
graphs

Yes Yes No No

Restoring
graphs from
backups

Yes Yes No No

Deleting
backups

Yes Yes No No

Querying
backups

Yes Yes Yes Yes

Starting
graphs

Yes Yes No No

Stopping
graphs

Yes Yes No No

Upgrading
graphs

Yes Yes No No

Graph Engine Service
User Guide 2 Permissions Management

2024-11-30 10

Operation GES
Administrator

GES Manager GES
Operator

Tenant
Guest

Exporting
graphs

Yes Yes No No

Viewing
results in the
task center

Yes Yes Yes Yes

Resizing a
graph

√ No No ×

Expanding a
graph

√ No No ×

Restarting a
graph

√ Yes No ×

Configuring
fine-grained
permissions

√ Yes No ×

Configuring
user groups

√ Yes No ×

Importing
IAM users

√ Yes No ×

Viewing user
details

√ Yes Yes √

Table 2-5 Common GES operations supported by each OBS policy

GES Operation Dependent OBS Permission

Viewing metadata OBS Viewer policy or OBS Buckets Viewer
role

Creating, importing, copying,
editing, and deleting metadata

OBS Operator policy or Tenant
Administrator role

Creating, importing, and
exporting graphs

OBS Operator policy or Tenant
Administrator role

Table 2-6 Common GES operations supported by each IAM policy

GES Operation Dependent IAM Permission

Importing IAM users iam:users:listUsers (custom policy), IAM
ReadOnlyAccess (system policy), or Server
Administrator role

Graph Engine Service
User Guide 2 Permissions Management

2024-11-30 11

GES Operation Dependent IAM Permission

Creating or editing a user
group

iam:users:listUsers (custom policy), IAM
ReadOnlyAccess (system policy), or Server
Administrator role

Graph Engine Service
User Guide 2 Permissions Management

2024-11-30 12

3 Metadata Operations

3.1 Graph Data Formats

3.1.1 Static Graph
Before importing graph data, familiarize yourself with the graph data formats
supported by GES.

● GES only supports the loading of raw graph data in the standard CSV format.
If your raw data is not in this format, convert it to CSV.

● GES graph data consists of the vertex, edge, and metadata files.
– Vertex files store vertex data.
– Edge files store edge data.
– Metadata is used to describe the formats of data in vertex and edge files.

Concept Description

Graph data is imported through a property graph model in GES, so you must learn
the concept of the property graph.

A property graph is a directed graph consisting of vertices, edges, labels, and
properties.

● A vertex is also called a node, and an edge is also called a relationship. Nodes
and relationships are the most important entities.

● Metadata describes vertex and edge properties. It contains multiple labels,
and each label consists of one or more properties.

● Vertices with the same label belong to a group or a set.
● Each vertex or edge can have only one label.

Metadata

The following figure shows the metadata structure.

Graph Engine Service
User Guide 3 Metadata Operations

2024-11-30 13

Figure 3-1 Metadata structure

GES metadata is stored in an XML file and is used to define vertex and edge
properties.

It contains labels and properties.

● Label
A label is a collection of properties. It describes formats of property data
contained within a vertex or an edge.

NO TE

If the same property name is defined in different labels, the cardinality and dataType
of the properties in different labels must be the same.

● Property
A property refers to the data format of a single property and contains three
fields.
– Property name: name of a custom property. The value can contain 1 to

256 characters and cannot contain special characters (<>&).

NO TE

A label cannot contain two properties with the same name.

– cardinality: composite type of data. The options are single, list, and set.

▪ single indicates that the data of this property has a single value,
such as a digit or a character string.

Graph Engine Service
User Guide 3 Metadata Operations

2024-11-30 14

NO TE

If value1;value2 is of the single type, it is regarded as a single value.

▪ list and set indicate that data of this property consists of multiple
values separated by semicolons (;).
○ list: The values are placed in sequence and can be repeated. For

example, 1;1;1 contains three values.
○ set: The values are in random sequence and must be unique.

Duplicate values will be overwritten. For example, 1;1;1 contains
only one value (1).

NO TE

list and set do not support values of the char array data type.

– dataType: Data type. The following table lists the data types supported
by GES.

Table 3-1 Supported data types

Type Description

char Character

char
array

Fixed-length string. Set the maximum length using the
maxDataSize parameter.
NOTE

● You can set maxDataSize to limit the maximum length of the
string. For details, see Metadata structure.

● Only single supports the data type.
● If the property data is a string, you are advised to set dataType

to char array. If the data type is set to string, the import is
slower.

float Float type (32-bit float)

double Double floating point type (64-bit float point)

bool Boolean type. Available values are 0/1 and true/false.

long Long integer (value range: -2^63 to 2^63-1)

int Integer (value range: -2^31 to 2^31-1)

date Date. Currently, the following formats are supported:
● YYYY-MM-DD HH:MM:SS
● YYYY-MM-DD
NOTE

The value of MM or DD must consist of two digits. If the day or
month number contains only one digit, add 0 before it, for
example, 05/01.

enum Enumeration. Specify the number of the enumerated values
and the name of each value. For details, see Metadata
structure.

Graph Engine Service
User Guide 3 Metadata Operations

2024-11-30 15

Type Description

string Variable-length string
NOTE

The data import efficiency can be very low if the string is too long.
You are advised to use a char array instead.
You can set the length of a char array as needed. It is
recommended that the length be less than or equal to 32
characters.

The following figure shows a metadata example:

<?xml version="1.0" encoding="ISO-8859-1"?>
<PMML version="3.0"
 xmlns="http://www.dmg.org/PMML-3-0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema_instance" >
 <labels>
 <label name="default">
 </label>
 <label name="movie">
 <properties>
 <property name="movieid" cardinality="single" dataType="int" />
 <property name="title" cardinality="single" dataType="string"/>
 <property name="genres" cardinality="single" dataType="string"/>
 </properties>
 </label>
 <label name="user">
 <properties>
 <property name="userid" cardinality="single" dataType="int" />
 <property name="gender" cardinality="single" dataType="string"/>
 <property name="age" cardinality="single" dataType="enum" typeNameCount="7"
 typeName1="Under 18" typeName2="18-24" typeName3="25-34" typeName4="35-44"
typeName5="45-49"
 typeName6="50-55" typeName7="56+"/>
 <property name="occupation" cardinality="single" dataType="enum" typeNameCount="21"
 typeName1="other or not specified" typeName2="academic/educator" typeName3="artist"
typeName4="clerical/admin" typeName5="college/grad student"
 typeName6="customer service" typeName7="doctor/health care" typeName8="executive/
managerial" typeName9="farmer" typeName10="homemaker"
 typeName11="K-12 student" typeName12="lawyer" typeName13="programmer"
typeName14="retired" typeName15="sales/marketing"
 typeName16="scientist" typeName17="self-employed" typeName18="technician/engineer"
typeName19="tradesman/craftsman" typeName20="unemployed"
 typeName21="writer"/>
 <property name="Zip-code" cardinality="single" dataType="char array" maxDataSize="12"/>
 </properties>
 </label>
 <label name="rate">
 <properties>
 <property name="Rating" cardinality="single" dataType="int" />
 <property name="Datetime" cardinality="single" dataType="string"/>
 </properties>
 </label>
</labels>
</PMML>

Vertex Files

A vertex file contains the data of each vertex. A vertex of data is generated for
each behavior. The following is an example. id is the unique identifier of a set of
vertex data.

id, label, property 1, property 2, property 3, ...

Graph Engine Service
User Guide 3 Metadata Operations

2024-11-30 16

NO TE

● The vertex ID cannot contain hyphens (-).
● You do not need to set the data type of the vertex ID. It is of the string type by default.
● Do not add spaces before or after a label. Use commas (,) to separate information. If a

space is identified as a part of a label, the label may fail to be identified. In this case,
the system may display a message indicating that the label does not exist.

Example:

Vivian, user, Vivian, F, 25-34, artist, 98133
Eric, user, Eric, M, 18-24, college/grad student, 40205

Edge Files
An edge file contains the data of each edge. An edge of data is generated for each
behavior. The graph size in GES is defined by the quantity level of the edges, for
example, one million edges. The following is an example. id 1 and id 2 are the IDs
of the two endpoints (vertices) of an edge.

id 1, id 2, label, property 1, property 2, ...

Example:

Eric,Lethal Weapon,rate,4,2000-11-21 15:33:18
Vivian,Eric,friends

3.2 Importing a Metadata File

3.2.1 Preparing Metadata

Preparing Metadata on a Local PC
You need to prepare a metadata file on your PC and import the file to GES for
subsequent use.

The metadata file must be in XML format.

(Optional) Importing Metadata to OBS
You can upload a prepared metadata file to an OBS bucket to import it to GES.

The procedure is as follows:

1. Log in to the OBS console and create an OBS bucket. If you already have a
bucket, ensure that the OBS bucket and GES are in the same region.

2. Upload the prepared file to the OBS bucket. The metadata file must be in
XML format.

3.2.2 Importing Data From a Local Path or OBS
1. On the GES management console, click Metadata Management in the

navigation tree on the left.
2. On the Metadata Management page, click Import in the upper left corner.

Graph Engine Service
User Guide 3 Metadata Operations

2024-11-30 17

3. In the Import dialog box, select Local or OBS for Type to import a metadata
file form a local path or OBS.
– Import a metadata file from a local path.

Select Local File: Click Upload to select the metadata file.

NO TE

The file must be in the XML format.

Name: Enter a name for the metadata.
Storage Path: Select an OBS path for storing the metadata file.

– Import a metadata file from OBS.
Select File Path: Select the metadata file from OBS.

NO TE

● The file must be in the XML format.

● Ensure that you have uploaded the metadata file to your OBS bucket.

Name: Enter a name for the metadata.
4. Click OK to import the metadata.

If the import is successful, the metadata file is displayed on the Metadata
Management page.

3.3 Creating a Metadata File
If you currently have no metadata file, you can create metadata files on GES.

Procedure
1. On the Metadata Management page, click Create Metadata File in the

upper right corner.
2. Configure the following parameters on the displayed page:

– Name: Enter the metadata file name. The default file format is XML.
– Storage Path: Select an OBS path for storing the metadata file. If you

create metadata for the first time, you need to enable OBS. (You are
advised to obtain user authorization and automatically create OBS
buckets for the metadata.)

– Definition: Metadata models can be built manually or in a visualized
manner.
Manual: Click Add Label. Define the label name and label type. Click
Add under the label name to add a property. You can also click Up or
Down to sort properties. Table 3-2 lists the property parameters. For
details about other metadata information, see Graph Data Formats.

NO TE

1. Multiple labels are allowed. Click Add label to add labels as needed.

2. There are three types of labels: vertex, edge, and general-purpose (both
vertex and edge).

Visual:

Graph Engine Service
User Guide 3 Metadata Operations

2024-11-30 18

▪ Adding a vertex label: Drag a circle to the canvas to add a vertex.
Click the vertex in the canvas to define its name, description, and
properties.

▪ Adding an edge label: Click a connection point on a vertex and drag
it to the connection point of another vertex to create an edge. Define
its name, description, source vertex, target vertex, and properties.
Table 3-2 lists the property parameters.

Table 3-2 Property parameters

Name Description

Property
Name

Name of a property. It contains 1 to 256 characters. Special
characters such as angle brackets (<>) and ampersands
(&) are not allowed.

Cardinalit
y

Composite type of data
● Single value: indicates that the property has a single

value, such as a digit or a string.
● Multiple values: indicates that the property has

multiple values separated by semicolons (;). You can
determine whether to allow repetitive values.

Data Type Data type of the property values. Available values are
char, float, double, bool, long, int, date, enum, string,
and char array. For details, see Static Graph.
NOTE

Only the single-value property supports the char array type.

Operation Click Remove to delete a property.

3. Click OK. The created metadata file will be displayed on the Metadata

Management page.
On the Metadata Management page, you can view the storage path, status,
and modification time of the metadata.

3.4 Copying a Metadata File
If you edit a metadata file, the original metadata file will be overwritten. To avoid
loss of the original metadata, you can sabe a copy of the file before editing it.

Procedure
1. GES provides two methods for you to copy a metadata file on the Data

Management page.
– Click the metadata file name. On the details page, click Copy.
– Click Copy in the Operation column of the target metadata file.

2. Specify the metadata file name and storage path.
Name: Enter the name of the copied metadata file. The default file format is
XML.

Graph Engine Service
User Guide 3 Metadata Operations

2024-11-30 19

Storage Path: Enter an OBS path for storing the metadata file.

3. Click OK.

The copy of the metadata file will be displayed on the Metadata
Management page.

3.5 Editing a Metadata File
If the metadata file you imported or created needs to be modified, you can
directly modify its labels and properties.

NO TE

After the metadata file is edited, the original metadata file will be overwritten. To avoid
data loss, you are advised to save a copy of the metadata file before editing it.

Procedure
1. GES provides two methods for you to edit a metadata file on the Data

Management page.

– Click the metadata file name. On the metadata details page, click Edit.

– Click Edit in the Operation column of the target metadata file.

Figure 3-2 Clicking Edit

2. On the editing page:

– On the Manual tab, you can add labels and properties, change label
names, and sort properties by clicking Up and Down.

– On the Visual tab, you can drag a vertex to the canvas to add a label, or
click a vertex or edge to modify the label information.

3. After the modification is complete, click OK.

3.6 Searching for a Metadata File
On the Metadata Management page, enter the name of the metadata file you
want to search.

3.7 Deleting a Metadata File
If a metadata file becomes invalid, locate it in the metadata file list on the
Metadata Management page, click More in its Operation column, and select
Delete.

Graph Engine Service
User Guide 3 Metadata Operations

2024-11-30 20

NO TE

Deleted data cannot be recovered. Exercise caution when performing this operation.

Graph Engine Service
User Guide 3 Metadata Operations

2024-11-30 21

4 Creating Graphs

4.1 Methods to Create a Graph
Create a graph on the GES console.

You have two options to choose from: customizing a graph and creating a
dynamic graph. By default, the former is used.

● Custom graph: This is a default graph creation method that fully meets your
requirements.

● Dynamic graph: By default, the dynamic graph analysis function is enabled
for graphs created in this mode.

NO TE

You must create a dynamic graph to use the function. This function cannot be enabled
for custom graphs and template-based graphs.

4.2 Creating a Custom Graph
1. Log in to the GES console and click Create Graph in the upper right corner of

the Overview page.

2. On the Create Graph page, set the following parameters:

a. In the Configure step, set the graph name and software version.

Parameter Description

Graph Name You can set a name or use the default name. After a
graph is created, its name cannot be changed.
The graph name must:
● Contain 4 to 50 characters and start with a letter.
● Be case-insensitive.
● Contain only letters, digits, and underscores (_).

Graph Engine Service
User Guide 4 Creating Graphs

2024-11-30 22

Parameter Description

GES Software
Version

The system uses the latest version by default, and
only the default version is available.

b. Specify the network information, including VPC, Subnet, Security Group,

Enterprise Project, and Public Network Access.

Parameter Description

VPC A VPC is a secure, isolated, and logical network
environment.
Select the VPC for which you want to create the
graph and click View VPC to view the name and ID
of the VPC.
NOTE

If your account has VPCs, a VPC will be automatically
selected. You can change it as needed. If no VPC is available,
you need to create a VPC. After the VPC is created, it will be
automatically selected.

Subnet A subnet provides dedicated network resources that
are logically isolated from other networks for
network security.
Select the subnet for which you want to create the
graph to enter the VPC and view the name and ID of
the subnet.

Security Group A security group implements access control for ECSs
that have the same security protection requirements
in a VPC.
● Click View Security Group to learn security group

details.

Public Network
Access

The public network access to the graph. Set this
parameter as you need.
Do not use: A graph instance without an elastic IP
(EIP) cannot be accessed over the Internet. However,
the graph instance can be accessed through ECSs
deployed on a private network.
Buy now: GES automatically allocates an EIP with
exclusive bandwidth to the graph instance so that the
graph instance can be accessed over the Internet
using the EIP. In addition, GES uses the tenant
permission to automatically create an agency with
the prefix of ges_agency_default in the project to
support EIP binding.
Specify: Select an EIP to allow the graph instance to
be accessed over the Internet.

Graph Engine Service
User Guide 4 Creating Graphs

2024-11-30 23

Parameter Description

Tag Tags for a resource. Enter a tag key and value, and
click Add to add the tag.
You can view the added tag in the graph details and
search for graphs by tag on the Graph Management
page.

NOTE
It is recommended that you use TMS's predefined tag
function to add the same tag to different cloud resources.

Security Mode If you enable the security mode, communications will
be encrypted when you access a graph instance, and
only HTTPS can be used when you call APIs. This
function affects GES performance.

Cryptographic
Algorithm

Available values are as follows:
● General cryptographic algorithms (SM series

cryptographic algorithms not supported) are used
by all components to store and transmit sensitive
data. These algorithms that do not have special
requirements.

● SM series commercial encryption algorithm
(compatible with the international general
algorithm) is supported. Sensitive data of all
components is stored using this algorithm. The SM
series commercial encryption algorithm and
international algorithm can be used for data
transmission.

c. Set graph parameters.

Parameter Description

Cross-AZ HA Whether to support cross-AZ cluster.
If this function is enabled, graph instances are
distributed in different AZs to enhance reliability.

Graph Engine Service
User Guide 4 Creating Graphs

2024-11-30 24

Parameter Description

Purpose Purpose of the graph to be created.
Enterprise production: High reliability and
concurrency are supported, suitable for production
and large-scale applications.
Developer learning: A complete function experience
is offered, suitable for developer learning.

Versions GES editions.
● Memory edition: The capacity is limited and a

maximum of 10 billion edges are supported.
Storage and compute based on memory storage.
This edition is preset with a variety of algorithms,
and Gremlin and Cypher query languages are
supported.

● Database edition: The storage capacity is
unlimited. Storage and compute based on
distributed key-value databases. This edition has
higher performance and has unlimited capacity,
but it supports only the Cypher queries.

Compute
Resource

Type of compute resources.
An elastic cloud server (ECS) is a computer system
that has complete hardware, an operating system
(OS), and network functions and runs in a secure,
isolated environment.

CPU
Architecture

Currently, GES supports X86 and Kunpeng.

Graph Size
(Edges)

Available options based on your resource quota.
Different graph specifications are displayed for
Enterprise production and Developer learning.
● Development learning: Currently, there is only

10-thousand-edge graphs are available for this
purpose, regardless of the edition.

● Enterprise production: The specifications vary
depending on the edition.
– Memory edition: Available options are million-

edge, 10-million-edge, 100-million-edge,
billion-edge, billion-edge-pro, and 10-billion-
edge.

– Database edition: Available options are
billion-edge, 10-billion-edge, and 100-billion-
edge.

NOTE
Graph size, which is based on the number of edges. The
value is not accurate. If there are a large number of vertices
and properties, you are advised to apply for graphs with a
larger size.

Graph Engine Service
User Guide 4 Creating Graphs

2024-11-30 25

Parameter Description

Vertex ID Type Only fixed-length string and hash types are available
for graphs of the database edition.
● Fixed-length string: Vertex IDs are used for

internal storage and compute. Specify the length
limit. If the IDs are too long, the query
performance can be reduced. Specify the length
limit based on your dataset vertex IDs. If you
cannot determine the maximum length, set the ID
type to Hash.

● Hash: Vertex IDs are converted into hash code for
storage and compute. There is no limit on the ID
length. However, there is an extremely low
probability, approximately 10^(-43), that the
vertex IDs will conflict.

NOTE
If you cannot determine the maximum length of a vertex
ID, set this parameter to Hash.

d. Advanced Settings: Set this parameter to Default or Custom.

▪ Default: Use the default values.

▪ Custom:

○ If you choose the memory edition, the options include Encrypt
Instance, Full-Text Indexing, Operation Audit, and Fine-
Grained Permission.

Parameter Description

Encrypted
Instance

Whether to encrypt a graph instance. Key
Source is default to KMS. KMS Key: Select the
key as needed.
NOTE

Some functions will be affected if you disable or
delete a KMS key.

Full-Text Index Whether to enable full-text search, fuzzy search,
prefix search, and regular expression match.
NOTE

Currently, only billion-edge-pro and 100-billion-edge
(database edition) graphs support this feature.

Fine-Grained
Permission

Whether to enable fine-grained permission
management. If this function is enabled, the
traverse, read, and write permissions can be set
for specific attributes each label.

3. Click Next. The Confirm page is displayed.

4. Confirm the information and click Submit to create the graph.

Graph Engine Service
User Guide 4 Creating Graphs

2024-11-30 26

5. After the submission is successful, the Finish tab page is displayed. You can
click Back to Task Center to view the status and running result of the created
graph.

4.3 Creating a Dynamic Graph
1. Log in to the GES console and click Create Graph in the upper right corner of

the Overview page.
2. On the displayed page, click the Create Dynamic Graph tab. The page for

creating a dynamic graph is displayed.
3. Set required parameters by referring to Creating a Graph Without Using a

Template.
By default, the Dynamic graph analysis capability is enabled for dynamic
graphs.

4. Click next. On the Confirm page that is displayed, confirm the information
and click Submit to create the graph.

5. After the submission is successful, the Finish tab page is displayed. You can
click Back to Task Center to view the status and running result of the created
graph.

6. For details about how to use dynamic graphs, see Dynamic Graphs.

4.4 Starting a Graph

Scenario
You can start graphs in Stopped status in the graph list so that they can be
accessed and analyzed again.

Graphs in Running status cannot be started.

Procedure

Step 1 Log in to the GES management console.

Step 2 In the navigation tree on the left, select Graph Management.

Step 3 Locate the target graph in the graph list and choose More > Start in the
Operation column.
● If the graph to be started has backups, a dialog box is displayed indicating

that you can select either of the following methods to start the graph:
– Restore Last Graph: Restart the graph that stopped running.
– Start Backup: Start the graph using the backup data.
After selecting a startup method, click Yes. The graph status becomes
Preparing and the progress is displayed.

● If the graph to be started does not have backups, the graph status changes to
Preparing and the progress is displayed after you click Start.

Graph Engine Service
User Guide 4 Creating Graphs

2024-11-30 27

Step 4 After the graph is started, the status changes from Preparing to Starting. Wait
several minutes. When the startup is successful, the graph status is switched to
Running.

----End

4.5 Stopping a Graph

Scenario

If you do not need to use a graph, you can stop it. After the graph is stopped, you
cannot access it.

NO TE

Resources are not released after you stop the graph.

Procedure

Step 1 Log in to the GES management console.

Step 2 In the navigation tree on the left, select Graph Management.

Step 3 Locate the target graph in the graph list and choose More > Stop in the
Operation column.

Step 4 The graph status changes to Stopping. Wait several minutes. When the graph is
successfully stopped, the graph status is switched to Stopped.

----End

4.6 Accessing Graphs

Scenario

On the Graph Management page, you can click Access to query and analyze a
created graph.

Procedure

On the Graph Management page, view all created graphs and click Access in the
Operation column of a target graph.

4.7 Importing Incremental Data

Scenario

After you create a graph, you need to import graph data. If you need to add new
graph data, you can import data to the graph.

Graph Engine Service
User Guide 4 Creating Graphs

2024-11-30 28

NO TE

● To prevent failures in restoring the imported graph data during system restart, do not
delete the data stored on OBS when the graph is in use.

● The default separator of data columns is comma (,). You cannot define a separator.

Procedure

Step 1 Log in to the GES management console.

Step 2 In the navigation pane on the left, choose Graph Management.

Step 3 In the graph list, locate the target graph, click More in the Operation column, and
select Import.

Step 4 In the Import dialog box that is displayed, set the following parameters:
● Metadata: Select an existing metadata file or create one. For details, see

Creating a Metadata File.
● Edge Data: Select the corresponding edge data set.
● Vertex Data: Select the corresponding vertex data set. If you leave it blank,

the vertices in the Edge Data set are used as the source of Vertex Data.
● Log Storage Path: Stores vertex and edge data sets that do not comply with

the metadata definition, as well as detailed logs generated during graph
import.

● Edge Processing: Includes Allow repetitive edges, Ignore subsequent
repetitive edges, Overwrite previous repetitive edges, and Ignore labels
on repetitive edges.

Edge Processing: Repetitive edges have the same source and target vertices.
When labels are considered, repetitive edges must have the same source and
target vertices and the same labels.
– Allow repetitive edges: Multiple edges may exist between a source

vertex and a target vertex.
– Ignore subsequent repetitive edges: If there are multiple edges

between a source vertex and a target vertex, only the first edge read is
retained.

– Overwrite previous repetitive edges: If there are multiple edges
between a source vertex and a target vertex, only the last edge read is
retained.

– Ignore labels on repetitive edges: If labels are ignored, edges with the
same source vertex and target vertex are repetitive edges.

● Import Type: The value can be Online import or Offline import.

Graph Engine Service
User Guide 4 Creating Graphs

2024-11-30 29

NO TE

● Graphs of the database edition support multi-graph management, and you need to
select a graph name. Edge Processing and Import Type are not supported.

● The edge and vertex data sets can only be stored in English paths and folders.
● Currently, you can import the edge and vertex data sets only from OBS. You need to

store data files in an OBS bucket..
● The sequence of the properties and labels in the selected edge or vertex data set must

be the same as the sequence in the selected metadata file. Otherwise, The edge/vertex
data file does not match the metadata file is displayed in the upper right corner and
the graph fails to be created. For details about the graph data format, refer to Graph
Data Formats.

● You need to import the graph data (including the metadata file, and edge and vertex
data sets) in the format specified in the template. The template contains a copy of
movie information. You can click Download to download and import it.

Step 5 Click OK.

----End

Graph Engine Service
User Guide 4 Creating Graphs

2024-11-30 30

5 Managing Graphs

5.1 Graph Management Overview
On the Graph Management page, you can view the name, running status,
internal access address, external access address, and creation time of a graph.

NO TE

To view the internal access address is the floating IP address for accessing the graph
instance. You can click the IP address to view the list of physical IP addresses of the graph
instance. To prevent service interruption caused by floating IP address switchover, poll the
physical IP addresses to access the graph instance.

Click next to a graph name to view the graph information, including Graph
ID, VPC, Subnet, Security Group, Graph Size (Edges), Vertex Data Set, Edge
Data Set, Metadata, Graph Version, Cross-AZ HA, Created By, Fine-Grained
Permission, CPU Architecture, Encrypted, and Operation Audit.

5.2 Viewing a Failed Graph
If the ECS quota is insufficient, graphs may fail to be created. You can view failed
graphs on the Graph Management page.

Procedure

Step 1 In the navigation tree on the left, select Graph Management.

Step 2 In the upper left corner of the displayed page, view the number of graphs that fail
to be created next to Graph Management.

Step 3 Click to view the name, running status, and creation time of the graph that
fails to be created. You can also delete the failed graph.

Graph Engine Service
User Guide 5 Managing Graphs

2024-11-30 31

NO TE

Graphs that fail to be created will occupy quotas if they are not deleted.

Step 4 Click View Details in the Operation column to go to the Task Center page. View
the start time, end time, failure cause, and job ID of the failed creation task.

NO TE

Asynchronous task details can be retained only for one month. You cannot view information
about graphs created more than one month ago.

----End

5.3 Backing Up and Restoring Graphs

5.3.1 Backing Up a Graph
To ensure data security, back up the graph data so that you can restore it when
faults occur.

Procedure
You can perform the backup operation on the Graph Management page or the
Backup Management page.

1. Graph management operations

a. Log in to the GES management console. In the navigation tree on the
left, select Graph Management.

b. Locate the target graph in the graph list and select Back Up in the
Operation column.

c. In the dialog box displayed, click OK.

NO TE

On the Graph Management page, the backup operation can be performed only
on the selected graph. The associated graph cannot be changed.

d. In the navigation tree on the left, click Backup Management. You can
view the backup task in the backup list.
If Status is Backing up, wait several minutes. When Status is switched to
Succeeded, the backup is successful.

2. Backup management operations

a. Log in to the GES management console. In the navigation tree on the
left, select Backup Management.

b. In the upper right corner of the Backup Management page, click Create
Backup.

c. In the Create Backup dialog box, set Associated Graph (a graph created
by the current user) and click OK to start the backup.

NO TE

You can select an Associated Graph for the backup. However, if there is only one
graph, you cannot change the value of Associated Graph.

Graph Engine Service
User Guide 5 Managing Graphs

2024-11-30 32

d. In the backup list, you can view the data being backup up or newly
backed up.
If Status is Backing up, wait several minutes. When Status is switched to
Succeeded, the backup is successful.

e. Go to the Backup Management page, view the backup name and type,
name, status, and size of the associated graph, CPU architecture, creation
time, end time, backup size, and backup duration.

5.3.2 Restoring a Graph
If the graph data being edited is incorrect, you can load the backup data to restore
the graph data for analysis.

NO TE

Ten-thousand-edge graphs and graphs of the database edition cannot be automatically
backed up. You need to back up a graph and restore data from the manul backup. For
graphs of other sizes, you can restore data from an automatic backup or manual backup.

The procedure is as follows:

Step 1 Log in to the GES management console and choose Backup Management from
the navigation pane on the left.

Step 2 On the Backup Management page displayed, locate the row containing your
desired backup and click Restore in the Operation column.

Step 3 In the Restore dialog box, select This operation will overwrite the target graph.
After the restoration starts, the target graph will be restarted using the
backup. Then, click Yes.

Step 4 After a message is prompted indicating that the restoration is successful, you can
access the target graph and obtain the restored data on the Graph Management
page.

----End

5.3.3 Deleting a Backup
If backup data is no longer used, you can delete it as needed.

The procedure is as follows:

Step 1 Log in to the GES management console and choose Backup Management from
the navigation pane on the left.

Step 2 In the backup list, select the backup data to be deleted and click Delete in the
Operation column.

Step 3 In the displayed dialog box, click Yes to delete the data.

NO TE

1. Deleted data cannot be recovered. Exercise caution when performing this operation.

2. You cannot delete the automatic backup data of a graph that has not been deleted.

----End

Graph Engine Service
User Guide 5 Managing Graphs

2024-11-30 33

5.3.4 Exporting a Backup to OBS
To migrate GES data across regions, you can export backup files to OBS.

NO TE

● Graphs of the database edition do not support this function.

● Only graphs of memory edition 2.3.16 or later support this function. To export graphs of
an earlier version, you need to upgrade the graphs by referring to Upgrading a Graph,
and then export the graphs.

● You need to back up the graph on the Graph Management page so that the graph can
be displayed on the Backup Management page. For details, see Backing Up a Graph.

● On the Backup Management page, only graphs whose Graph Status is Running and
Status is Successful can be exported to OBS. Otherwise, the Export button is
unavailable.

Step 1 Log in to the GES management console and choose Backup Management from
the navigation pane on the left.

Step 2 In the backup list, select the backup to be exported and click Export in the
Operation column.

Step 3 In the dialog box that is displayed, verify that the backup information is correct
and select an OBS path.

Note that the OBS export path can only be an empty directory, and after the
export, the graph data files under that directory cannot be deleted, added, or
modified. Otherwise, the backup will fail when importing from OBS to the graph.

Figure 5-1 Exporting a backup to OBS

Step 4 Click OK to back up the graph.

NO TE

Storing backup files in OBS will incur charges. For details, see .

Graph Engine Service
User Guide 5 Managing Graphs

2024-11-30 34

Step 5 After the task is delivered, you can view its execution status on the Task Center
page.

----End

5.3.5 Importing a Backup from OBS
You can import a backup file exported to OBS to a graph. After the import is
successful, you can use the backup to restore the graph instance.

NO TE

● Graphs of the database edition do not support this function.
● Only graphs of memory edition 2.3.16 or later support this function. To export graphs of

an earlier version, you need to upgrade the graphs by referring to Upgrading a Graph,
and then import the graphs.

The procedure is as follows:

Step 1 Log in to the GES management console and choose Backup Management from
the navigation pane on the left.

Step 2 In the upper right corner of the page displayed, click Import.

Step 3 In the dialog box that is displayed, select the graph to be imported and the OBS
path where the backup is stored, and click OK to import the backup.

Figure 5-2 Importing a backup

NO TE

Select a directory (folder) to ensure successful backup import.

Step 4 After the task is delivered, you can view its execution status on the Task Center
page.

----End

5.4 Upgrading a Graph
Because the GES software is upgraded continuously, graphs of earlier versions can
also be upgraded to the new version.

Graph Engine Service
User Guide 5 Managing Graphs

2024-11-30 35

The procedure is as follows:

Step 1 Log in to the GES management console and choose Graph Management from
the navigation pane on the left.

Step 2 Locate the target graph in the graph list and choose More > Upgrade in the
Operation column.

Step 3 In the displayed dialog box, select a version from the Version List and determine
whether to select Forcible Upgrade.

NO TE

If Forcible Upgrade is selected, all in-progress tasks will be interrupted. Exercise caution
when performing this operation.

Step 4 Click OK. The graph status changes to Upgrading. Wait several minutes, the
status will become Running after the upgrade is successful.

NO TE

If the upgrade fails, the graph automatically rolls back to the source version.

----End

5.5 Exporting a Graph
You can export graph data to a custom OBS directory.

The procedure is as follows:

Step 1 Log in to the GES management console and choose Graph Management from
the navigation pane on the left.

Step 2 Locate the target graph in the graph list and choose More > Export in the
Operation column.

Step 3 In the lower part of the page that is displayed, select a storage path. (For a graph
of the database edition, you also need to select the graph name.)

Step 4 Click OK. The graph status changes to Exporting. Wait several minutes, the status
will become Running after the export is successful.

You can check whether the data is exported successfully in the selected OBS path.

NO TE

If you choose to export CSV files to your local host, the files are opened using the
spreadsheet software by default. You are advised to open the files in a text editor. If the
data contains special characters such as plus signs (+), minus signs (-), equal signs (=), and
at signs (@), the data will be parsed into formulas by the software. To ensure system
security, pay attention to the following when opening such files:

1. Do not select Enable Dynamic Data Exchange Server Launch (not recommended).

2. Do not select Enable or Yes if a dialog box indicating a security issue is displayed.

----End

Graph Engine Service
User Guide 5 Managing Graphs

2024-11-30 36

5.6 Restarting a Graph
You need to restart a graph in the following cases:

1. If you access a graph in the Running, Importing, Exporting, or Clearing
status and an unknown exception occurs, you can restart the graph.

2. You can restart a graph that is stuck in a state. For example, if a graph stuck
in the Exporting status for a long time because the data to be exported is too
much. You can restart the graph to stop exporting.

The procedure is as follows:

Step 1 Logging In to the GES Management Console.

Step 2 In the navigation pane on the left, choose Graph Management. On the displayed
page, locate the graph to be restarted and choose More > Restart in the
Operation column.

Step 3 In the displayed dialog box, check the name of the graph to be restarted.

NO TE

Restarting a graph will forcibly terminate the running task. For an import task, only partial
data can be imported.

Step 4 Click OK. The graph status changes to Stopping. After several minutes, the graph
status changes to Running.

----End

5.7 Resizing a Graph
If the storage capacity, computing capability, or service capability of a graph
cannot meet service requirements, you can resize the graph.

NO TE

● Currently, 10,000-edge and 10-billion-edge graphs cannot be resized.

● After the graph is resized, you need to re-create all indexes.

The procedure is as follows:

Step 1 Log in to the management console.

Step 2 In the navigation pane on the left, choose Graph Management. On the displayed
page, locate the target graph and choose More > Resize in the Operation
column.

Step 3 In the displayed dialog box, select the target specifications. You can only select
higher specifications. For example, a graph with 1 million edges can be changed to
10 million, 100 million, 1 billion, or 10 billion edges.

Graph Engine Service
User Guide 5 Managing Graphs

2024-11-30 37

Step 4 Click OK. The graph status changes to Preparing for resize. After several minutes,
the graph status changes to Resizing. When the resize is complete, the graph
status changes to Running.

----End

5.8 Expanding a Graph
Graph expanding increases the maximum number of concurrent read-only
requests that can be processed, without changing the graph size.

NO TE

● Currently, 10,000-edge and 10-billion-edge graphs cannot be expanded.
● Graphs cannot be resized after expansion. If you want to resize and expand the graph,

resize the graph before you expand it.

The procedure is as follows:

Step 1 Log in to the management console.

Step 2 In the navigation pane, choose Graph Management. On the displayed page,
locate the target graph and choose More > Expand in the Operation column.

NO TE

Only a running graph can be expanded.

Step 3 In the displayed dialog box, set the number of nodes to be added.

Step 4 Click OK. The graph status changes to Expanding. Wait several minutes, the
status will become Running after the expansion is successful.

----End

5.9 Binding and Unbinding an EIP

Binding an EIP
To access GES over the Internet, you can bind an Elastic IP Address (EIP) to your
instance.

The procedure is as follows:

Step 1 Log in to the GES management console.

Step 2 In the navigation tree on the left, select Graph Management.

Step 3 Locate the target graph in the graph list and choose More > Bind EIP in the
Operation column.

Step 4 On the displayed Bind EIP page, select an available EIP.

Step 5 Click OK.

----End

Graph Engine Service
User Guide 5 Managing Graphs

2024-11-30 38

Unbinding an EIP
If you do not need to use the EIP, you can unbind the EIP to release network
resources.

The procedure is as follows:

Step 1 Log in to the GES management console.

Step 2 In the navigation tree on the left, select Graph Management.

Step 3 Locate the target graph in the graph list and choose More > Unbind EIP in the
Operation column.

Step 4 In the displayed dialog box, click Yes.

----End

5.10 Clearing Data
If unnecessary data is imported or the imported data volume exceeds the graph
size, you can clear the data.

In addition, if you delete data by mistake using Gremlin or Cypher commands, you
can clear the broken data and import the correct data again.

NO TE

This operation will clear all vertex and edge data of the graph. Exercise caution when
performing this operation.

The procedure is as follows:

Step 1 Log in to the GES management console and choose Graph Management from
the navigation pane on the left.

Step 2 Locate the target graph in the graph list and choose More > Clear Data in the
Operation column.

Step 3 In the dialog box that is displayed, select or deselect Clear the metadata in the
graph. (For a database edition graph, you need to select the graph name first.)

NO TE

● If you clear graph metadata, the graph will be reset, and all data and running tasks will
be cleared.

● Deleted metadata cannot be recovered. Exercise caution when performing this
operation.

Step 4 Click Yes.

----End

5.11 Deleting a Graph
If you have analyzed the graph data, you can delete the graph to release
resources.

Graph Engine Service
User Guide 5 Managing Graphs

2024-11-30 39

NO TE

Backups of a graph will be also deleted after the graph is deleted, and data cannot be
recovered. Exercise caution when performing this operation.

The procedure is as follows:

Step 1 Log in to the GES management console.

Step 2 In the navigation tree on the left, select Graph Management.

Step 3 Locate the target graph in the graph list and choose More > Delete in the
Operation column.

Step 4 In the Delete Graph dialog box displayed, determine:

● Whether to delete the EIPs bound to the graph instance. If no EIPs are bound,
this option is unavailable. If you do not select the EIPs, the EIPs are retained
by default.

● Whether to delete graph backups. By default, one automated backup and two
manual backups are retained, occupying the backup quota. If you do not
select the backups, the backups are retained by default.

Step 5 Click OK.

----End

5.12 Viewing Monitoring Metrics
It takes a period of time for transmitting and displaying data. The GES status
displayed in the Cloud Eye monitoring data is the status obtained 5 to 10 minutes
before. You can view the monitoring data of a newly created graph 5 to 10
minutes later.

Prerequisites
● The created graph is running properly.

● The graph has been properly running for at least 10 minutes. For a newly
created graph, you need to wait for a while before viewing its metrics.

● You can view monitoring data of graphs in the running, importing,
exporting, and clearing states.

Viewing Monitoring Metrics

Step 1 Log in to the management console.

Step 2 In the navigation pane, choose Graph Management. In the Operation column,
choose More > View Metrics. The Cloud Eye management console is displayed.

Step 3 On the monitoring page for GES, you can view the figures of all monitoring
metrics.

Graph Engine Service
User Guide 5 Managing Graphs

2024-11-30 40

Figure 5-3 Viewing monitoring metrics

Step 4 To view the monitoring curve in a longer time range, click Full Image to view a
chart in a bigger view.

Figure 5-4 Zoomed in graph

Step 5 The system allows you to select a fixed time range or use automatic refresh.

1. Fixed time ranges include Last 1 hour, Last 3 hours, Last 12 hours, Last 24
hours, and Last 7 days.

----End

5.13 Querying Schema
Query the metadata of a graph. The metadata contains labels and properties.

The procedure is as follows:

Step 1 Log in to the management console.

Step 2 In the navigation pane, choose Graph Management. In the Operation column,
choose More > Query Schema. A window is displayed, showing the labels
contained in the metadata of the current graph.

Graph Engine Service
User Guide 5 Managing Graphs

2024-11-30 41

Figure 5-5 Querying schema

Step 3 To view the properties contained in a label, click of each label.

Figure 5-6 Viewing properties in labels

----End

Graph Engine Service
User Guide 5 Managing Graphs

2024-11-30 42

6 Accessing and Analyzing Graph Data

6.1 Graph Editor
The graph editor consists of a graph analysis area (algorithm library, metadata
tab, operation tab, and graph exploration), canvas, query text box, result display
pane, and filtering and property tabs.

Table 6-1 Graph editor

Area Description

Exploratio
n pane

Graph exploration tools, for example, path expansion. For details
about the functions, see Exploring Graphs.

Operation
s

Operations executed by API calls. For details, see Adding Custom
Operations.

Schema Metadata operations, such as adding, hiding, importing, and
exporting data. For details, see Editing Schema.

Algorithm
s

Algorithms supported by GES. You can set the properties of each
algorithm in this area. Table 6-2 describes the functions of the
algorithm library.
NOTE

After you select an algorithm in the algorithm library and execute it, the
canvas displays the sampling sub-graph that contains the key result. The
execution result is incomplete. To obtain the complete returned result, call
the corresponding API.

Canvas Graph structure of data. Shortcut operations are preset in the
drawing area for you to easily analyze the graph data.
Table 6-3 describes the functions of the drawing area.

Query box 1. Gremlin query statements
2. Cypher query statements
3. DSL query statements

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 43

Area Description

Result
display
pane

There are two tab pages:
● Running Record where you can View Running Records.
● Query Result where you can Viewing Query Results.

Filter and
Property
area

On the canvas, select a vertex and right-click it. Then, choose View
Property from the shortcut menu to view the Filter and Property
area.

Figure 6-1 Algorithm Library

Table 6-2 Algorithm library description

Interface Element Description

Enter the algorithm name to quickly find it.

Expand the algorithm parameter configuration
area.

Run the algorithm.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 44

Interface Element Description

Set the properties of an algorithm. Different
algorithms have different properties. For details,
see Algorithms.

Figure 6-2 Canvas

Table 6-3 Canvas description

Interface Element Description

Row 1: 13 indicates the number of vertices
displayed on the current canvas and 886813
indicates the total number of vertices in the
entire graph.
Row 2: 9 indicates the number of edges
displayed on the current canvas and 892773
indicates the total number of edges in the
entire graph.

An isolated vertex is a vertex that is not an
endpoint of any edge.
● To display isolated vertices in a selected

area, press Ctrl and click and drag to select
an area on the canvas, and then click
Isolated Vertices.

● To display all isolated vertices in the canvas,
click Isolated Vertices.

Select a vertex in the canvas and click neighbor
vertices to view all vertices associated.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 45

Interface Element Description

Cancel the previous operation.

Redo the canceled previous operation.

Select All data or Current data.
● All data indicates all data of a graph.
● Current data indicates the data rendered

on the canvas.

You can change the theme of the GES editor.
Three themes are supported: light, dark, and
system.

After you select All data or Current data,
enter the node ID in the search box, for
example, 2. Press Enter or click the query icon
to search for the corresponding vertex and
render it to the canvas.
NOTE

● Currently, only a single vertex ID can be entered.
● If you choose Current data from the drop-down

list, vertices on the current canvas are
highlighted.

Click Clear to clear all content on the canvas.

Export the canvas content as a PNG or CSV file
(snapshot or vertex and edge file of the
current canvas).

Keyboard shortcuts
● Ctrl+E: Select an associated entity.
● Ctrl+'+': Zoom in.
● Ctrl+'-': Zoom out
● Ctrl+Z: Undo an operation.
● Ctrl+A: Select all.
● Ctrl+Delete: Clear the canvas.
● Delete: Hide vertices.
● Ctrl+Click: Select multiple vertices and

edges.

Zoom in the graph. You can zoom in a graph to
at most 600%.

Zoom out the graph. You can zoom out a
graph to 5%.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 46

Interface Element Description

Automatic screen adaptation
When the displayed graph data is too large
(cannot be completely displayed) or too small,
you can click this button to quickly adjust it
based on the screen size.

Whether to display legends

Quick layout switchover. From left to right:
Force directed, Circle, Grid, Radial-tree,
Hierarchical, CoSE, and Double-core. Figure
Force directed shows how the graph looks on
the canvas.
NOTE

The Double-core takes effect only when two nodes
are selected.

Click a vertex to select the color and size,
which is a good way to mark data.

Vertex details. Move the cursor to a non-
virtualized vertex. The ID, label, and properties
of this vertex are displayed.
NOTE

A maximum of six properties of a vertex can be
displayed in the pop-up window.

Shortcut operations in the
drawing area

Box-select: Shift + Left-click and drag
All vertices in the box are selected, as
illustrated in the following figure.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 47

Interface Element Description

Multi-select: Ctrl + Left-click and drag
All vertices in the box are selected and
highlighted, as illustrated in the following
figure.

Select/Deselect: Ctrl + Left-click
Press Ctrl and left-click a vertex or an edge to
select and highlight it. Press Ctrl and left-click
the vertex or edge again to deselect it.

Select all: Ctrl + A
Select and highlight all vertices and edges.

Select associated vertices and edges: Ctrl + E
Select a vertex and press Ctrl + E to highlight
all vertices and edges associated with it.

Hide: Delete
Quickly hide a vertex or an edge.

Adaptation: Ctrl + F
Automatically zoom in or out all vertices and
edges based on the current screen width and
height.

Zoom out: -
Press the - key on the keyboard to zoom out
the graph.

Zoom in: = (+)
Press the + key on the keyboard to zoom in the
graph.

Deselect: Esc
Deselect all selected and highlighted vertices
and edges.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 48

Interface Element Description

Zoom in and zoom out: Scroll the mouse
wheel forwards and backwards.
Scroll the mouse wheel to zoom in or out the
graph.

Figure 6-3 Force directed

Figure 6-4 Circle

Figure 6-5 Grid

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 49

Figure 6-6 Radial-tree

Figure 6-7 Hierarchical

Figure 6-8 CoSE

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 50

Figure 6-9 Double-core

6.2 Accessing the GES Graph Editor
You can use the graph editor to query and analyze graphs. It has extensive built-in
algorithms for customers to use in different scenarios of different fields. In
addition, it is compatible with the Gremlin and Cypher query languages and
supports open APIs. GES is easy to use even for zero-based users.

The procedure is as follows:

1. Log in to the GES management console and choose Graph Management
from the navigation pane on the left.

2. On the Graph Management page, select the graph to be accessed and click
Access in the Operation column.

You can analyze the graph data on the graph editor. For details, see Graph
Editor.

6.3 Dynamic Graphs

6.3.1 Timeline
If you want to view vertex and edge changes over time, a timeline is required to
convert a static graph into a dynamic graph. This also allows you to get dynamic
analysis result.

NO TE

To use this function, you need to create a dynamic graph. For details, see Creating a
Dynamic Graph.

Setting a Timeline
1. Log in to the GES console and choose Graph Management from the

navigation pane on the left. On the displayed page, locate the dynamic graph
and click Access in the Operation column.

2. On the displayed graph editor page, set the following parameters in the
Timeline Settings dialog box:

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 51

NO TE

The parameters set here will be synchronized to those in Community Evolution and
Temporal BFS.

– Start Time Property: Name of the start time property that is a property
of the imported or created metadata. The default value is startTime. The
name must be of the date, long, or int type.

– Start: Start time of the dynamic graph. The start time must be earlier
than or equal to the end time.

– End Time Property: Name of the end time property that is a property of
the imported or created metadata. The default value is endTime. The
name must be of the date, long, or int type.

– End: End time of the dynamic graph.
– Advanced Settings: Use Default settings or Custom settings.

▪ Default: Use the default settings.

▪ Custom: Set the display duration of vertices and edges in the graph
and the display priority of labels.
○ Vertex/Edge Display: How long the vertices and edges in an

algorithm result will be displayed on the canvas. This function is
supported for Temporal BFS only. The value must be a
timestamp in seconds. The default value is 604800 (7 days).

This function is used to the returned vertex and edge data that
contains the start time only.

3. Click OK.

NO TE

If you want to modify the timeline parameters, click in the lower left corner of
the canvas.

6.3.2 Community Evolution
The community evolution algorithm generates a dynamic graph that shows
structure changes of a community over time. The procedure to use this algorithm
is as follows:

1. Set parameters in the Community Evolution drop-down list in the Temporal
tab of the Graph Analysis area on the left of the graph editor page.
– Set the start time, end time, and their properties. For details see Setting

a Timeline. To modify the parameters, click in the lower left corner
of the canvas.

– Vertices: IDs of vertices in the community. You can enter a maximum of
100,000 vertex IDs. Use commas (,) to separate them.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 52

Figure 6-10 Community evolution

2. Click on the right of Community Evolution. The running result is
displayed on the canvas.

Figure 6-11 Dynamic graph

UI Element Description

Start playback.

Playback direction of the dynamic graph. If you
toggle on this switch, the playback will be
forward. If you toggle off this switch, the playback
will be backward.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 53

UI Element Description

Whether the playback uses the double slider

● Toggled on (by default): Two sliders are used
for playback. The start and end sliders move
forward or backward at the same time, and the
length of the time window represented by the
distance between the sliders remains
unchanged.

● Toggled off: Only the one slider is used for
playback.
– If the playback is forward, the start slider is

fixed and end slider moves froward on the
timeline.

– If the playback is backward, the end slider is
fixed and start slider moves backwards on
the time line.

Whether data displayed on the canvas contains
static data. If you toggle on this switch, only
dynamic data is displayed.
Static data refers to the data that does not
change over time.

Whether the timeline uses dates or timestamps.
● By default, this switch is toggled on, which

means that you need to enter timestamps to
specify the duration.

● If you toggle this switch off, you enter dates
and time to specify the duration.

Start time and end time of the duration you want
to view graph data changes

Timeline settings. For details about how to set the
parameters, see Setting a Timeline.

Step length: Length of each step that the slider
moves on the timeline
Interval: Interval between two steps

Timeline

6.3.3 Temporal BFS
Temporal breadth-first search (BFS) algorithm searches for associated vertices
based on temporal message passing and temporal BFS algorithms, and outputs
the visit time of each vertex and the distance from the vertex to the source start
vertex. The procedure to use this algorithm is as follows:

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 54

1. In the Temporal tab of the Graph Analysis area on the left of the graph
editor page, click Temporal BFS, and set the parameters in the drop-down
list.
– Set the start time, end time, and their properties. For details see Setting

a Timeline. To modify the parameters, click in the lower left corner
of the canvas.

– Start Vertex: ID of the start vertex
– k: Traversal depth, indicating the maximum number of vertices in a

traversal. The value ranges from 1 to 100. The default value is 3.
– Direction: Whether the traversal is performed along the directions of

edges in the graph. The value can be true (default value) or false.

▪ true: Traversal is performed along edge directions.

▪ false: Edge directions will not be considered in the traversal.

Figure 6-12 Temporal BFS

2. Click on the right of Temporal BFS. The running result is displayed on the
canvas. In this algorithm, a single slider is used for playback. As shown in
Figure 6-13 and Figure 6-14, the vertices in the dynamic graph are increases
over time.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 55

Figure 6-13 Running result

Figure 6-14 Running result

6.3.4 Temporal Paths
Temporal paths that start from a vertex to the target node show the trend of
increment (or non-decrement) of vertices and edges over time on the canvas. The
paths follow the order of information transmission on dynamic graphs, the passing
time of an edge on a path must be later than or the same as that of the previous
edge.

For this feature, you can use the strategy parameter to adjust whether the
temporal path with the shortest distance or the temporal path that reaches the
target node as early as possible is searched for. The procedure is as follows:

1. In the Temporal Paths tab of the Graph Analysis area on the left of the
graph editor page, click Temporal BFS, and set the parameters in the drop-
down list.
– Set the start time, end time, and their properties. For details see Setting

a Timeline. To modify the parameters, click in the lower left corner
of the canvas.

– source: ID of the start node
– targets: set of end node IDs. Multiple end node IDs can be configured.
– k: Traversal depth, indicating the maximum number of vertices in a

traversal. The value ranges from 1 to 100. The default value is 3.
– strategy: execution strategy of the algorithm. The value can be shortest

or foremost.

▪ shortest: the temporal path with the shortest distance is returned

▪ foremost: the temporal path that reaches the target node as early as
possible is returned

– directed: Whether the traversal is performed along the directions of
edges in the graph. The value can be true (default) or false.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 56

▪ true: Traversal is performed along edge directions.

▪ false: Edge directions will not be considered in the traversal.

Figure 6-15 Temporal paths

2. Click on the right of Temporal Paths. The execution results are displayed
on the canvas. As shown in Figure 6-16 and Figure 6-17, the vertices in the
dynamic graph change over time.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 57

Figure 6-16 Execution result 1

Figure 6-17 Execution result 2

6.4 Graph Exploration
Handful graph exploration tools facilitate your analysis.

Path Extension
Filters are added to query APIs to search for the desired k-hop vertices or edges.

In the Path Extension area on the left of the GES graph editor, set the following
parameters:

● Start Vertex: IDs of start vertices. You can use any of the following methods
to query the vertices:

a. Press and hold Shift and drag a rectangle using the left mouse button to
select desired vertices, right-click a vertex, and choose Set as Path Start
from the shortcut menu. The Path Extension will be displayed. The IDs of
the selected vertices are automatically filled in the Start Vertex box. In
this box, you can add or delete vertex IDs. After you finish selecting, click

. The query result is displayed on the canvas.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 58

Figure 6-18 Selecting start vertices

b. Random selection: Click Random next to the start vertex box. The system
automatically selects vertices in the graph and enters vertex IDs. You can

add or delete vertex IDs in the box. After you finish selecting, click .
The query result is displayed on the canvas.

c. Specifying one start vertex: Enter the ID of a vertex in the text box and
press Enter.

d. Specifying a batch of start vertices: Enter IDs of desired vertices in the
text box and separate them with commas (,). Then, press Enter. A
window is displayed when you enter many vertex IDs so you can view
them clearly.

NO TE

Do not enter the same vertex ID repeatedly or an empty value. If the entered
vertex ID name contains commas (,), replace the commas with ",".

● Search Criteria: Each row in the list corresponds to a query type and criterion
of each hop. If there are more hops than criteria, the criteria will be repeated.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 59

Figure 6-19 Search criteria

Refer to the following description to set the search criteria:
– Hop count: Number of search criteria.
– Search criterion: Each hop has a search criterion. Click a search statement

text box. The Search Settings window is displayed. Enter a search
statement.
The following search criteria operators are available:
has: A property key or the value of a property key must be contained.
hasLabel: The label value must be one of the specified values.
and: Conditions A and B (can be nested) must be met.
or: Either condition A or B (can be nested) must be met.

Figure 6-20 Search settings

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 60

NO TE

1. To view a sample criterion, double-click a blank text box. Regular search
statements are as follows:

has(PropertyName): Search for a vertex that has PropertyName.

has(PropertyName, PropertyValue): Search for a vertex that has a property
whose name is PropertyValue.

hasLabel(LabelName1,LabelName2): Search for a vertex that has a label
whose value is LabelName1 or LabelName2

or(has('name', 'peter'), has('age', '30')): Search for a vertex whose name is
Peter or age is 30.

and(has('person'),or(has('name','peter'),has('age','30')): Search for a
vertex whose name is peter and age is 30.

2. If there is only one search criterion, the delete, up, and down buttons are
grayed out. The first criterion cannot be upshifted, and the last criterion
cannot be downshifted. The maximum number of search criteria is 20 (that is,
the maximum number of hops).

● Show path process: Whether the vertices that are not on the final path will
be displayed. This is disabled by default.

● Advanced Settings: You can set the expansion strategy here.
Currently the following traversal methods are available for graph expansion:
– ShortestPath: This method traverses all the shortest paths from the start

vertex to every vertex in the graph. This effectively suppresses the
exponential growth of the query volume in multi-hop queries.

– Walk: Duplicate vertices are not filtered during traversal.

NO TE

As shown in the figure, the third-hop neighbor of vertex a is queried.

If you use the walk method, the paths are: a->c->a->b, a->c->d->f, a->c->d->c, and a-
>c->a->c.

Vertices a and c appear repeatedly in the paths such as a->c->a->b and a->c->d->c.
Using ShortestPath can reduce duplicate paths, speed up the query process, and
reduce the number of queries in this process.

For ShortestPath, the query process generates the a->c->d->f path only.

6.5 Multi-Graph Management (Database Edition)
When you create a database graph, it is automatically upgraded to a multi-graph
cluster. This cluster can have multiple graph instances, each allocated with
different data. This allows you to analyze multiple graphs simultaneously.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 61

In the graph engine editor, you can manage the graph instances in the graph
cluster by clicking the dropdown menu next to the cluster name in the upper left
corner of the page to switch between graph instances.

Figure 6-21 Multi-graph management

NO TE

Only graphs of the database edition support this function.

Adding or Deleting a Graph
1. After the database graph cluster is created, the graph engine editor page is

displayed. For details, see Accessing the GES Graph Editor.
2. In the upper left corner of the page, click Add Graph. In the dialog box

displayed, enter the graph name and select the vertex ID type.
Currently, two vertex ID types are supported: fixed-length string and hash.
– Fixed-length string: Vertex IDs are used for internal storage and compute.

Specify the length limit. If the IDs are too long, the query performance
can be reduced. Specify the length limit based on your dataset vertex IDs.
If you cannot determine the maximum length, set the ID type to Hash.

– Hash: Vertex IDs are converted into hash code for storage and compute.
There is no limit on the ID length. However, there is an extremely low
probability, approximately 10^(-43), that the vertex IDs will conflict.

NO TE

1. If you cannot determine the maximum length of a vertex ID, set this parameter to
Hash.

2. If you select the fixed-length string (fixedLengthString), you also need to enter the
length of the vertex ID.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 62

Figure 6-22 Adding a graph

3. After setting the parameters, click OK.

4. To delete a graph instance, click Delete Graph.

6.6 Adding Custom Operations
You can add custom operations executed by calling APIs. You can create shortcut
operation sets.

Procedure
1. In the Operations tab on the left of the graph editor, click Edit . The Add

Operation button is displayed.

2. Click Add Operation and set the following parameters in the displayed dialog
box:

– Name: Enter a name for the custom operation.

– API Type: cypher, gremlin, algorithm, and path_query are supported.

– Request Body: Enter the request body for the calling the API.

– Description: Add a description for the operation.

3. Click OK. These parameters cannot be changed after the operation is added.

4. The new custom operation is displayed in the Operations tab. You can click
the run button to execute the operation and view the results on the canvas.

6.7 Editing Schema

Adding a Label

In the metadata list on the left of the graph editor, click to add a label.

● Label Name: name of the label to be added.

● Type: You can select a label type (vertex, edge, or general-purpose). General-
purpose indicates that a label can represent either a vertex or an edge.

● Custom vertex style: You can define the color and mark of a label to
distinguish vertices.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 63

● Add properties. By default, only the first added property is displayed on the
canvas. You can manually adjust the property to be displayed. The canvas will
respond in real time.

Counting Vertices and Edges

On the Schema tab of the GES editor, click Refresh Vertex and Edge Count. The
system counts the total number of vertices and edges in the current graph. You
can also view the last count time.

Modifying a Label

In the metadata file list, click the metadata file for which you want to modify the
label. The metadata label details page is displayed.

● You can modify the label's property name, cardinality, and data type.
● To hide or delete a property, click the hide or remove button in the Operation

column.
● If you accidentally deleted or incorrectly modified a property, simply click the

reset button to revert back to the last saved data.

Confirm the modification and click Save.

Hiding a Label
● Hide all vertices and edges of a label.

In the metadata list on the left of the graph editor, click the eye button next
to metadata to hide all vertices and edges of the metadata in the analysis
result.

● Hide the vertices and edges of a selected label
On the canvas, click any vertex in the graph. The selected vertex is displayed

as .

– is a label-based hide button. You can click this button next to a label
to hide the vertices and edges of the selected label. That is, these vertices
and edges are not displayed or dimmed on the canvas.

– is a label-based display button. You can click the button to display
the vertices and properties of the label.

Importing and Exporting Labels

You can import the metadata, edge data, and vertex data of a graph to or export
them from an OBS bucket.

● Import: Click Import in the metadata list. In the dialog box that is displayed,
set Metadata, Edge Data, Vertex Data, Log Storage Path, Edge Processing,
and Import Type, and click OK to import the data from the OBS bucket to a
graph.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 64

– Log Storage Path: Stores vertex and edge data sets that do not comply
with the metadata definition, as well as detailed logs generated during
graph import.

– Edge Processing: Includes Allow repetitive edges, Ignore subsequent
repetitive edges, Overwrite previous repetitive edges, and Ignore
labels on repetitive edges. Repetitive edges have the same source vertex
and target vertex. When labels are considered, repetitive edges must have
the same source and target vertices and the same labels.

● Export: Click Export in the metadata list. In the dialog box that is displayed,
set Metadata Name, Vertex Data Set, Edge Data Set, and Export Path, and
click OK to export the data to the OBS bucket.

Deleting a Label
NO TE

1. After this API is called, all data associated with the label will be deleted. Exercise caution
when performing this operation.

2. If the graph version is earlier than 2.2.18, schema labels cannot be deleted.
3. Schema labels cannot be deleted from graphs of the database edition.
4. The default label _DEFAULT_ cannot be deleted.

To delete a label, do the following:

1. To delete a label, click the deletion icon next to the schema on the Schema
tab on the left of the graph engine editor.

2. In the dialog box that is displayed, read the message carefully, confirm the
name of the label to be deleted, enter DELETE in the text box, and click OK.

Figure 6-23 Confirming the deletion

3. During the deletion, the result of deleting the label algorithm is displayed in
the result display pane below the canvas.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 65

Figure 6-24 Results display

During the deletion, the filtering function on the Filtering tab is unavailable.

6.8 Visual Query
In the graph editor, you can create graph query statements by dragging and
dropping vertices and edges, and preview the query results without writing any
code.

Procedure
1. In the left pane of the graph editor, click the Visual Query tab.

Figure 6-25 Visual query

2. Add a vertex to the canvas.

a. In the Add Vertex Pattern tab, all vertex labels and edge labels of the
graph are displayed. Each label is displayed as a card that can be dragged
to the canvas. Select a vertex label and drag it to the canvas.
The Cypher query statement below changes with your operations.

NO TE

These vertex labels and edge labels are the same as those in the metadata list in
Editing Schema.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 66

b. Drag the labels you want to use for the query to the canvas and click
Execute Query. The graph result is displayed on the right of the canvas.
You can view the running records of the Cypher query statement in the
Running Record tab below the canvas. Click Query Result to view the
result.

Figure 6-26 Query result

3. Add a vertex filter.
Click a vertex in the canvas. The Filter tab page is displayed in the left pane.
On the Filter tab, specify labels, vertex ID, and property search criteria to
search for the vertex labels you want to view on the canvas.

Figure 6-27 Adding a vertex search criterion

– Vertex V1: Cypher variable ID (vertex identifier in the Cypher query
statement below the canvas), which is named based on the sequence in
which vertices are dragged to the canvas, for example, V1, V2, and more
alike.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 67

– Label: Set one or more labels to search for target vertices. The logical
operator between each two labels is OR.

– Vertex ID: It is equivalent to a filter criterion. After adding a vertex ID to a
vertex label, you can click Query to query the vertex labels with the same
vertex ID.

– Constraints: Specify a property contained in the vertex label. Currently, a
property with multiple values is not supported.

▪ Property: Property contained in the label.

▪ Operator: Comparison operators (>,>=,<,<=,=,<>), null judgment
operators (is null, is not null), and string comparison operators
(starts with, ends with, contains) are supported.

NO TE

starts with searches for a property that starts with a specified string; ends
with searches for a property that ends with a specified string; contains
searches for a property that contains a specified string.

▪ Value: Property value. The attribute value type must be the same as
that in the metadata. If the attribute value is of the character type,
you need to use single quotation marks ('').

▪ : Delete the constraint.

– + button: Add a criterion.
– Delete: Delete the added criterion.
Click Execute Query in the canvas again. The query result is displayed on the
right of the canvas.

4. Add an edge (connect two vertices on the canvas):
Double-click a vertex. After the border of the vertex turns red (do not move
the cursor out of the red border), click and drag a line from the vertex to
another vertex.
The Cypher query statement below changes with your operations.

Figure 6-28 Red border of a vertex

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 68

Figure 6-29 Adding an edge

5. Add an edge filter.
Click an edge in the canvas. The Filter tab page is displayed in the left pane.
On the Filter tab, specify labels, direction, hops, and property search criteria
to search for the edge labels you want to view on the canvas.

Figure 6-30 Adding an edge filter

– Edge e2: Cypher variable ID, which is named based on the sequence in
which edges are added to the canvas, for example, e1, e2, and more alike.

– Label: Set one or more labels to search for target edges. The logical
operator between each two labels is OR.

– Direction: Select the direction contained in the edge label.
When the slider is toggled on, the edge is a directed one. When the slider
is toggled off, the edge is undirected (or called bidirectional).
If the edge is directed, the arrow on the canvas indicates the direction of
the edge. You can click Change Direction to change the direction of the
selected edge on the canvas.

– Hops: The default value is 1. The value range is [0, 20). You can specify a
number or a range.

▪ If you enter an integer, it will be used as the number of hops in the
edge pattern.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 69

▪ If you enter two integers in the format of minHops..maxHops, for
example, 2..3, the number of hops in the edge pattern is within the
range of [2,3].

– Constraints: Specify a property contained in the edge label. Currently, a
property with multiple values is not supported.

▪ Property: Property contained in the label.

▪ Operator: Comparison operators (>,>=,<,<=,=,<>), null judgment
operators (is null, is not null), and string comparison operators
(starts with, ends with, contains) are supported.

NO TE

starts with searches for a property that starts with a specified string; ends
with searches for a property that ends with a specified string; contains
searches for a property that contains a specified string.

▪ Value: Property value. The attribute value type must be the same as
that in the metadata. If the attribute value is of the character type,
you need to use single quotation marks ('').

▪ : Delete the constraint.

– + button: Add a criterion.

If there is more than one criterion, click next to AND to set the
logical operator (AND or OR).

Figure 6-31 Selecting a logical operator

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 70

NO TE

The priority of AND is higher than OR. The suggested calculation sequence is as
follows:
1. Arrange all AND operations first.
2. Then, perform all OR operations.
In the following example, the edge search criterion is userid < 100 AND gender
= 'male' OR userid > 50 AND age = '18-24'.
The operation sequence is:
(userid < 100 AND gender = 'male') and (userid > 50 AND age = '18-24') are
operated first, and result1 and result2 are recorded respectively.
Then, result1 OR result2 is operated.

▪ Delete: Delete the added criterion.
Click Execute Query in the canvas again. The query result is displayed on
the right of the canvas.

6.9 Gremlin Query
Gremlin is a graph traversal language in the open source graph calculation
framework of Apache TinkerPop. You can use Gremlin to query, modify, and
traverse graph data as well as filter properties.

The procedure is as follows:

1. Log in to the GES graph editor. For details, see Accessing the GES Graph
Editor.

2. In the graph data query area, click the drop-up button to choose Gremlin.
Enter a query statement and press Enter to run the statement.

Figure 6-32 Switching to Gremlin query

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 71

Gremlin Statement
Typical query commands are as follows:

● Querying vertices
g.V().limit(100): This command is used to query all vertices and return only
100 vertices. You can also use the range (x, y) operator to obtain vertices
within the specified quantity.
g.V().hasLabel('movie'): This command is used to query vertices whose label
value is movie.
g.V('11'): This command is used to query the vertex whose ID is 11.

NO TE

1. The g.V () is not recommended because the query result cannot be completely
displayed if the vertex scale is large.

2. To prevent query timeout due to a large data volume, add the limit parameter and
set it less than 1,000.

● Querying edges
g.E(): This command is used to query all edges. You are not advised using this
command without filter criteria or limit to the returned results.
g.E('55-81-5'): This command queries the edge whose ID is 55-81-5.
g.E().hasLabel('rate'): This command queries edges whose label value is
rate.
g.V('46').outE('rate'): This command queries the edge whose ID is 46 and all
its labels are rate.

● Querying properties
g.V().limit(3).valueMap(): This command is used to query all properties of a
vertex. (You can specify a parameter to query only one vertex. All properties
of the vertex will be displayed in one row.)
g.V().limit(1).label(): This command is used to query the label of a vertex.
g.V().limit(10).values('userid'): This command is used to query the name
property of a vertex. (You can leave the parameter blank to query all
properties. Each property value is displayed in one row, without the key).

● Adding a vertex
g.addV('user').property(id,'600').property('age','18-24'): This command
adds a vertex whose label is user, ID is 600, and age ranges from 18 to 24.

● Deleting a vertex
g.V('600').drop(): This command deletes the vertex whose ID is 600.

● Adding an edge
g.addV('user').property(id,'501').property('age','18-24')
g.addV('movie').property(id,'502').property('title','love')
g.addE('rate').property('Rating', '4').from(V('501')).to(V('502'))
The preceding commands add two vertices and an edge. The two vertex IDs
are 501 and 502.

● Deleting an edge
g.E('501-502-0').drop(): This command deletes the edge whose ID is
501-502-0.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 72

NO TE

1. You can press the up and down arrow keys in the text box to view historical query
commands.

2. When you enter a syntax keyword, the system automatically displays historical
statements with the same keyword.

Figure 6-33 Historical queries

3. Keywords in the text box are displayed in different colors.

● Reserved words in gray

Note: A reserved word is predefined in the syntax system of a programming
language. Reserved words vary depending on programming languages.

● String values in orange

● Delimiters in red. Regular delimiters including square brackets [], curly brackets {},
parenthesis (), commas (,), and semicolons (;).

● Variables in green

Figure 6-34 Gremlin keywords

Gremlin Syntax Optimization

GES integrates the OLTP function of Gremlin, enhances some features, and
optimizes the strategy.

● Enhanced Text Predicate

g.V().has('name', Text.textSubString('xx'))

Predicate Description

textSubString Substring

textCISubString Substring that ignores cases

textFuzzy Fuzzy match

textPrefix Prefix query

textRegex Regular expression match

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 73

NO TE

When specifying a schema, do not name the attributes id, label, property, or
properties.
When you do Gremlin queries with many steps, the results will be converted into a
map. Two identical keys are not allowed in a map structure. If multiple identical keys
are inserted into a map, the key value will be overwritten or this operation is canceled.
If you set an attribute name to id, label, property, or properties, the returned results
will be incomplete because in many queries the graph ID is returned together with the
attribute ID.

Reference
Table 6-4 shows how Gremlin in GES differs from open source Gremlin.

Table 6-4 GES Gremlin differences

Difference Description

Vertex and Edge IDs An edge ID consists of the source vertex ID, target
vertex ID, and index that distinguishes duplicate
edges. The three parts are connected by hyphens (-),
for example, sid-tid-index. Edge and vertex IDs must
be the string type.

User Supplied IDs Users can only provide vertex IDs without hyphens
(-).

Vertex Property IDs Both edge and vertex properties do not have IDs. The
returned IDs are vertex IDs.

Vertex and Edge
Property

Vertex and edge properties are defined by metadata
files in GES. Therefore, you cannot add or delete
properties, but you can use property() and remove()
to modify property values. The value set by
property() is determined by the corresponding
parameter. remove() converts string properties into
empty strings, digital properties into 0, and list
properties into empty lists.

Variables The GES graph structure does not support the
variables feature.

Cardinality GES supports the single and list cardinality. The value
type of a vertex property is defined by the metadata
file. Therefore, no new property is added when you
set the property value.

Transactions During GES Gremlin implementation, transactions are
not explicitly used.

You can use the feature function to view the supported Gremlin features. If false
is displayed, GES does not support the feature. If true is displayed, GES supports
the feature.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 74

gremlin> graph.features()
==>FEATURES

NO TE

Currently, the following step commands are not supported:

● tryNext()

● explain()

● tree()

6.10 Cypher Query
Cypher is a declarative graph query language. You can use Cypher statements to
obtain query result and modify data in GES.

The procedure is as follows:

1. Access the GES graph editor. For details, see Accessing the GES Graph Editor.
2. Use label-based vertex and edge indexes during Cypher query.

If this is your first time using Cypher, click Create Index in the upper right
corner of the result display area. You do not need to perform this operation in
subsequent operations.

Figure 6-35 Creating an index

NO TE

After an index is created, wait for 30 seconds for the index to take effect and then
perform Cypher query.

3. In the graph data query area, enter the query statement and press Enter.

Cypher Statements

The following are typical query statements.

● Querying a vertex
match (n:movie) return n: Query the vertex whose label is movie.
match (n) return n limit 100: Query details about 100 vertices.
match (n{Occupation:'artist'}) return id(n), n.Gender limit 100: Query the
first 100 vertices whose Occupation is artist, and return their IDs and
genders.
match (n) where id(n)='Vivian' return n: Query the vertex whose ID is
Vivian.
match (n) return n skip 50 limit 100: Query all vertices of a graph. Skip the
first 50 vertices, and return a total of 100 vertices.

● Querying an edge

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 75

match (n)-[r]->(m) return r, n, m: Query all edges. Return the edges and
vertices at both ends.
match (n)-[r:rate]->(m) return r, n, m: Query the edges whose label is rate.
match (n)-[r:rate|:friends]-(m) where id(n)='Vivian' return n,r,m: Query
all edges whose start vertex is Vivian and edge label is rate or friends.

● Searching by path
match p=(n:user)--(m1:user)--(m2:movie) return p limit 100: Query the
paths whose start vertex is user, first-hop end vertex is user, and second-hop
end vertex is movie. Returns the first 100 paths.

● Aggregating and deduplicating based on groups
match (n) return count(*): Query the number of all vertices in a graph.
match (n:user) return n.Gender, count(n): Collect statistics on the number
of user vertices in every gender.
match (n:user) return distinct n.Occupation: Return deduplicated
occupations of all user vertices.

● Sorting
match (n:user) return id(n) as name order by name: Change IDs of all user
vertices to name, and sort the vertices by name.

● Creating a vertex
create(n:movie{_ID_:'The Captain', Year:2019})return n: Create a vertex
whose ID is The Captain, label is movie, and Year is 2019. Return the vertex.
create(n:movie{_ID_:'The Captain', Year:2019})-[r:rate]->
(m:movie{_ID_:'The Climbers',Title: 'The Climbers', Year:2019}) return r:
Create two vertices and their associated edges.

● Creating an edge
match (n),(m) where id(n)= 'The Captain' and id(m)= 'Lethal Weapon'
create (n)-[r:rate]->(m) return r : Create an edge whose label is rate
between two vertices with specified IDs. (You are advised to use this query in
2.2.21 and later versions.)

● Modifying properties
match (n) where id(n)= 'The Captain' set n.Title= 'The Captain' return n:
Search for the vertex whose ID is The Captain and change the attribute Title
to Ji Zhang.

● Deleting a vertex
match (n) where id(n)=' The Captain' delete n: Search and delete the
vertex whose ID is The Captain.
match (n) where id(n)=' "detach delete n": Search for the vertex whose ID
is The Captain. Delete the vertex and its edges.

● Querying a schema
If you call db.schema() independently, only the schema metadata of the
vertices is returned. Multiple isolated vertices are displayed on the canvas.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 76

NO TE

1. You can press the up and down arrow keys in the text box to view historical query
commands.

2. When you enter a syntax keyword, the system automatically displays historical
statements with the same keyword.

Figure 6-36 Historical queries

3. Keywords in the text box are displayed in different colors.

● Reserved words in gray

Note: A reserved word is predefined in the syntax system of a programming
language. Reserved words vary depending on programming languages.

● String values in orange

● Key-value pairs in purple. They are of the non-string type in the key:value format.

● Delimiters in red. Regular delimiters including square brackets [], curly brackets {},
parenthesis (), commas (,), and semicolons (;).

● Variables in green

Figure 6-37 Cypher keywords

6.11 DSL Query
DSL is a graph query language. You can use DSL statements to query and
compute graphs, helping you design and run algorithms at low costs. This function
applies only to graphs of 2.3.14 or later.

The procedure is as follows:

1. Log in to the GES graph editor. For details, see Accessing the GES Graph
Editor.

2. In the graph data query area, click the drop-up button to choose DSL. Enter a
query statement and press Enter to run the statement.

Figure 6-38 Switching to DSL query

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 77

Common DSL Query Statements

The following are typical query statements.

● Querying a vertex
Match<Vertex> v(['Vivian','Eric']);return v: Query vertices whose IDs are
Vivian and Eric.

● Querying neighbor vertices in N hops
Match<Vertex> v(['Vivian']);v.repeat(bothV()).times(2).emit();return v:
Query all neighbor vertices in two hops in both directions of a vertex whose
ID is Vivian.

● Returning a subgraph
Match<Vertex> v(['Vivian','Eric']); return v.subgraph(): Return vertices
Vivian and Eric and the edge set between them.

● Other statements
Match<Vertex> v(); v.pick(1); return v: Randomly match and return one
vertex.
Match<Vertex> v(); v.pattern('match (n:user) return n'); return v: // Use
Cypher statements to query and return the vertex set.

NO TE

1. You can press the up and down arrow keys in the text box to view historical query
commands.

2. When you enter a syntax keyword, the system automatically displays historical
statements with the same keyword.

3. Keywords in the text box are displayed in different colors.

● Reserved words in gray

Note: A reserved word is predefined in the syntax system of a programming
language. Reserved words vary depending on programming languages.

● String values in orange

● Key-value pairs in purple. They are of the non-string type in the key:value format.

● Delimiters in red. Regular delimiters including square brackets [], curly brackets {},
parenthesis (), commas (,), and semicolons (;).

● Variables in green

Figure 6-39 DSL keywords

6.12 Analyzing Graphs Using Algorithms
You can analyze graphs using basic graph algorithms, graph analysis algorithms,
and graph metric algorithms.

The procedure is as follows:

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 78

1. Log in to the GES graph editor. For details, see Accessing the GES Graph
Editor.

2. In the algorithm library area, you can select an algorithm and set its
parameters.

Algorithm List shows the algorithms supported by GES and Algorithms
describes the algorithm details.

3. Run the algorithm. You can view the query result after the analysis is
complete.

NO TE

Only the results of 500 vertices are displayed due to the size of the result display area.
If you want to view the complete query results of global iterative algorithms, such as
the PageRank algorithm, you can call the algorithm APIs.

4. Adjust the parameters, and run the algorithm again. PageRank value is
different this time, but the top ranking does not change.

5. Perform association prediction to obtain the association degree.

6.13 Analyzing Graphs on the Canvas
The canvas intuitively displays the graph data. You can also edit and analyze data
in this area. For details about the shortcut keys and interface elements on the
canvas, see Table 6-3.

The procedure is as follows:

Step 1 Log in to the GES graph editor. For details, see Accessing the GES Graph Editor.

Step 2 On the canvas, right-click a vertex or an edge, and perform the following
operations:

● View Property

Select View Property to view the property information about the selected
vertex or edge on the Property tab page.

● Search by Association

You can select OUT, IN, and ALL to expand vertices related to the current
vertex.

– OUT: Query the vertices using this vertex as the source vertex.

– IN: Query the vertices using this vertex as the target vertex.

– ALL: Query all vertices of OUT and IN.

● Export

Export the graph displayed on the canvas.

● Search by Path

Query paths between two vertices. All possible paths are listed.

Procedure: Hold down Ctrl and click two vertices. The first is the source vertex
and the second is the target vertex. Then, Right-click and choose Search by
Path from the shortcut menu.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 79

NO TE

This option is valid only when two vertices are selected. Otherwise, it is dimmed.

After this function is executed, the canvas is cleared, and then the queried
vertex and edge data is returned and rendered in the canvas. A path is formed
based on the selected two vertices.

● Shortest Path of the Vertex Sets

a. Hold down Shift and box-select a group of vertices (a single vertex or
multiple vertices).

b. Hold down Shift and box-select another group of vertices (a single vertex
or multiple vertices).

c. Right-click in the selection box and choose Shortest Path of the Vertex
Sets from the shortcut menu.

d. In the dialog box that is displayed, you can edit the selected two sets of
vertices and click + to quickly add vertices.

e. Click Run. The shortest paths between two vertex sets are returned.
● Common Neighbors of Vertex Sets

– Function
By box-selecting the common neighbors of two vertex sets, you can
intuitively discover the objects associated with the two sets.

– Procedure

i. Hold down Shift and box-select two vertex sets.
ii. Right-click a vertex set and choose Common Neighbors of Vertex

Sets from the shortcut menu.
iii. In the displayed dialog box, confirm the vertices in the vertex set. You

can add or delete vertices and determine whether to carry additional
parameters. Then, click Run.

NO TE

The Carrying additional constraints option allows you to limit the result
set:

○ If this option is not selected, the found common neighbors are the
intersection of the neighbors corresponding to the source vertex set and
target vertex set.

○ If this option is selected, the found common neighbors are not only the
intersection of the neighbors corresponding to the source vertex set and
target vertex set, but each vertex in the common neighbor set has at
least two neighboring vertices in the source vertex set and target vertex
set.

iv. Display the result.
● Sub Graph: Press and hold Ctrl and select some vertices. The edges between

those vertices and the selected vertices form a new graph.
● Add Edge: You can add an edge using either of the following methods:

a. Hold down Ctrl, select any two vertices on the canvas, right-click the
selected vertices, and choose Add Edge from the shortcut menu to add
an edge between the vertices. By default, the vertex selected first is the
source vertex, and that selected later is the target vertex. After the edge
is added, you can select the label of the edge and set the edge properties.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 80

b. Select a vertex, press Alt+A, drag the cursor to the target vertex, and left-
click to add an edge.

● Hide: Hide the selected vertex.

● Delete: Delete a vertex, an edge, multiple vertices, and multiple edges, or
delete edges and vertices in batches.

– To delete a vertex /edge, select the vertex/edge and delete it.

– To delete multiple vertices/edges, press Ctrl to select the vertices/edges
and delete them.

– To delete vertices and edges in batches, hold down Shift and drag the
left key of the mouse to select multiple vertices and edges and delete
them.

After you click Delete, a confirmation dialog box is displayed. Confirm
information about the vertices and edges you want to delete and click OK.

NO TE

The vertices and edges will be permanently deleted and cannot be restored. Exercise
caution when performing this operation.

Step 3 View the details about a vertex.

Move the cursor to a non-virtualized vertex. The ID, label, and properties of this
vertex are displayed.

NO TE

A maximum of six properties of a vertex can be displayed in the pop-up window. .

----End

6.14 Graph Display in 3D View
The 3D view of a graph provides you intuitive analysis experience.

NO TE

Constraints:

1. The 3D view is available for 1-billion-edge graphs only.

2. Currently, only PagePank and PersonalRank algorithms are available in the 3D view. You
can still use Cypher queries and Gremlin queries. For other algorithms or functions,
switch to the 2D view.

Displaying a Graph in 3D View

The following example shows how to view results of the PagePank algorithm in
the 3D view graph:

1. In the algorithm area on the left of the graph editor, select the PagePank
algorithm and set required parameters.

2. Run the algorithm. After the analysis is complete, you can view the result in
the canvas.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 81

3. Click in the upper left corner of the canvas to switch to the 3D
view.

6.15 Filter Criteria
You can set filter criteria to filter graph data.

The procedure is as follows:

1. Log in to the GES graph editor. For details, see Accessing the GES Graph
Editor.

2. Click on the right of the canvas, or select a vertex on the canvas, right-
click it , and choose View Property, to display the Filtering and Property
page.

3. In the Filtering area, set the filtering conditions and click Filter.
– Match: Vertex is selected by default. Possible values are Vertex and

Edge.
– Type: All types is selected by default. You can select the vertex or edge

type from the drop-down list. The type is defined by the metadata file
you upload.

– Add filtering condition: Click Add filtering condition to select a
property and choose a condition (Less than, Greater than, Equal to, Not
equal to, In range, Existent, Non-existent, Greater than or equal to, or
Less than or equal to). Properties are defined by the metadata file you
upload. You can add multiple filtering conditions or click Delete to delete
set conditions.

4. After the execution is complete, the filtering result is displayed in the drawing
area and result area.

6.16 Editing Properties
The Property tab displays information about the properties of the selected
vertices and edges. You can edit the properties of a single vertex or edge.

The procedure is as follows:

1. Right-click a vertex/edge on the canvas and choose View Property from the
shortcut menu. The Property tab is displayed on the right, showing the
properties of the selected vertex/edge.
If the selected vertex has multiple labels, you can click the drop-down box
next to the label to view the properties of other labels.

2. Click next to the property to edit it.

Click Edit All at the bottom of the property area to edit all the displayed
properties. Click Save All.

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 82

3. Click after you finish editing.

NO TE

In the Property tab, only the properties of a single vertex or edge can be edited. In the
Schema tab of the metadata area, you can add or delete all properties of a tag, as
described in section Editing Schema.

6.17 Statistics Display
To view the number of tags and vertex weights of specified vertices and edges,
you can select the vertices and edges on the canvas. For details about the
concepts of vertices and edges, see Graph Data Formats.

To display statistics, perform the following steps:

1. Log in to the GES graph editor. For details, see Accessing the GES Graph
Editor.

2. Click on the right side of the canvas. The Filter, Property, and Statistics
tabs are displayed. Click the Statistics tab.
– Tags: Statistics on all tags, and the number of vertices and edges of each

tag on the current canvas
– Top 10 Vertex Weight: Top 10 vertices with the largest number of edges

in the current graph
In the following example, there are two tags: user and movie. There are 100
vertices tagged with user and 46 vertices tagged with movie.
In the example graph, the vertex whose ID is 13 has the largest weight. There
are 55 edges in total. The vertex ranked at 10 is vertex 97. There are 42 edges
in total.

Figure 6-40 Tag statistics

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 83

3. Press Shift and drag the left key of the mouse to select vertices and edges in
the graph. The tags of the selected vertices and edges are displayed along
with the top 10 vertices with the highest weights among the selected verities.

6.18 View Running Records
The system logs your operations in a table, allowing you to review the execution
progress and completion time when analyzing data.

The procedure is as follows:

1. Log in to the GES graph editor. For details, see Accessing the GES Graph
Editor.

2. After executing a Gremlin/Cypher/DSL query or algorithm analysis, the
operation record name, status, request parameters, job ID, start time, and
duration will be displayed under the Running Record tab. Clicking the Query
Result tab will take you to the query results page, where you can view the
complete results of the operation.

Figure 6-41 Running Record tab

3. You can also export running records in json, csv, or excel format.

6.19 Viewing Query Results
After data analysis is complete, you can directly view the result on the canvas or
on the Query Result tab page.

The procedure is as follows:

1. Log in to the GES graph editor. For details, see Accessing the GES Graph
Editor.

2. Perform a Gremlin/Cypher/DSL query or algorithm analysis and check the
query results on the Query Result tab page.
If the returned results are too large to be fully displayed on the canvas and
result area, you can click the export button in the upper right corner to
download the analysis results. Currently, three export formats are supported:
json, csv, and excel.
– Run a Gremlin command. The command output is quickly displayed. For

example, if you run the g.V().limit(100) command, the result is as
follows:

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 84

Figure 6-42 Gremlin output

– Run a Cypher command. The command output is quickly displayed. For
example, if you run the match (n) return n limit 100 command, the
result is as follows:

Figure 6-43 Cypher output

– Run a DSL command to display its execution result. For example, if you
enter the query command Match<Vertex> v(); v.pick(1); return v, the
query result is as follows:

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 85

Figure 6-44 DSL output

– Run an algorithm. The running time and result are displayed. For
example, if you run PageRank, the result is as follows:

Figure 6-45 Algorithm output

Graph Engine Service
User Guide 6 Accessing and Analyzing Graph Data

2024-11-30 86

7 Viewing Graph Tasks

7.1 Graph Overview
The Overview page displays resource information, including Graph Status, Graph
Size, and Graph Backup, enabling you to quickly learn the information about
existing graphs.

Figure 7-1 Overview

Graph Status

The Graph Status pane displays the number of graphs in different statuses.
Currently, the system supports the following statuses.

Table 7-1 Graph statuses

Status Description

Running Indicates running graphs. Graphs in this status can be
accessed.

Preparing Indicates graphs whose ECSs are being created or started.

Starting Indicates graphs being started.

Stopping Indicates graphs being stopped.

Upgrading Indicates graphs being upgraded.

Graph Engine Service
User Guide 7 Viewing Graph Tasks

2024-11-30 87

Status Description

Importing Indicates graphs being imported.

Exporting Indicates graphs being exported.

Rolling back Indicates graphs being rolled back.

Clearing Indicates graphs being cleared.

Preparing for
resize

Indicates graphs preparing for resize.

Resizing Indicates graphs being resized.

Rolling back
resize

Indicates graphs where resize is being rolled back.

Preparing for
expansion

Indicates graphs preparing for expansion.

Expanding Indicates graphs being expanded.

Stopped Indicates stopped graphs. Graphs in this status cannot be
accessed, but can be restarted.

Abnormal Indicates abnormal graphs. Graphs in this status cannot be
accessed.

Failed Indicates graphs failed to be created.

Graph Size

The Graph Size pane displays the number of graphs in different sizes. Currently,
the system supports the following eight sizes.

NO TE

Only graph names and the number of graphs are displayed.

Table 7-2 Graph sizes

Size Description

10 thousand Indicates that the number of edges of a graph cannot exceed
10 thousand.

1 million Indicates that the number of edges of a graph cannot exceed
1 million.

10 million Indicates that the number of edges of a graph cannot exceed
10 million.

100 million Indicates that the number of edges of a graph cannot exceed
100 million.

Graph Engine Service
User Guide 7 Viewing Graph Tasks

2024-11-30 88

Size Description

1 billion Indicates that the number of edges of a graph cannot exceed
1 billion.

1 billion pro Indicates that the number of edges of a graph cannot exceed
2 billion.

10 billion Indicates that the number of edges of a graph cannot exceed
10 billion.

100 billion Indicates that the number of edges of a graph cannot exceed
100 billion.

Graph Backup

You can back up graphs to prevent data loss. The Graph Backup pane displays the
numbers of graphs with and without backups.

Table 7-3 Backup statuses

Backup Status Description

Backed up Indicates the number of graphs that are backed up.

Non-backed up Indicates the number of graphs that are not backed up.

7.2 Task Center

7.2.1 Management Plane Task Center
If you want to view details about creating, backing up, starting, backing up,
importing, exporting, and upgrading tasks, you can go to the Task Center page.

The procedure is as follows:

1. In the navigation pane on the left, click Task Center.

2. On the Task Center page, view the task type, task name, graph name,
associated graph, start time, end time, status, and running result.

3. In the Running Result column, click View Details to view the detailed
information. You can also click Cause of Failure or Job ID.

If the status of a data import task is Partially successful, you can click View
Details to view information such as the type of data that fails to be imported
and the number of rows that fail to be imported. To view the cause of failure,
check the log path (optional) specified when you import the graph because
failure logs are uploaded to the path.

4. On the Task Center page, search for a task in any of the following ways:

Graph Engine Service
User Guide 7 Viewing Graph Tasks

2024-11-30 89

Figure 7-2 Searching for a task

a. Selecting the task type
b. Selecting the task name
c. Entering an associated graph
d. Entering a task status
e. Entering a task ID
f. Setting the time

7.2.2 Service Plane Task Center
The task center allows you to view details about the historical tasks and
asynchronous tasks that are being executed.

The procedure is as follows:

1. In the navigation pane, choose Graph Management. On the displayed page,
locate the target graph and choose More > Task Center in the Operation
column.

NO TE

● The query task center is available for graphs of version 2.2.23 and later.
● You can access the query task center of graphs that are in the running, importing,

exporting, or clearing states only.

2. In the upper left corner of the Task Center page, select a node from the
drop-down list to view details about the asynchronous tasks that are being
executed or have been executed. The following task information is displayed:
– Job ID: Job ID of an asynchronous task
– Graph Name: name of graphs of the database edition
– Task Type: Type of the asynchronous task, including ImportGraph and

VertexQuery
– Original Request: Original request body sent by the user
– Status: Task status, which can be Suspended, Running, Succeeded, or

Failed
– Progress: Progress of the task
– Start Time: Time when the task starts. If the task does not start, the start

time is empty.
– End Time: Time when the task ends. If the task does not end, the end

time is empty.
– Operation: You can suspend the task.
– Running Result: You can view the task details. If the task fails, you can

view the failure cause.
3. To view details about an asynchronous task, search the task by its job ID using

the search box in the upper right corner of the page.

Graph Engine Service
User Guide 7 Viewing Graph Tasks

2024-11-30 90

7.3 Managing Connections
After you create a graph instance, you can download the required SDK and driver
and view the connection information of the graph.

In the navigation pane on the left, click Connection Management. The
Connection Management page is displayed.

Figure 7-3 Connection management page

Downloading SDK and Driver

Figure 7-4 SDK and driver

● Download an SDK and driver

– The SDK encapsulates the service plane APIs. You are advised to use the
SDK to access graph instances.

– You need to download the Cypher-JDBC driver for Cypher API access. For
details, see "Using the Cypher JDBC Driver to Access GES".

● Select the CPU architecture supported by the cluster. Currently, x86 and Arm
are available. Click Download to download the SDK.

● Click Historical Version to view historical SDK and driver versions and CPU
architecture of the driver. You can click Download in the Operation column
to download the historical driver.

Graph Engine Service
User Guide 7 Viewing Graph Tasks

2024-11-30 91

Connection Information

Figure 7-5 Instance information

Select the name of a created graph instance to view the following information:

● Private Network Address: ECSs in the same private network can connect to
the graph instance using the private network address.

● Public Access Address: You can use the public access address (EIP) to access
the graph instance through the Internet. You can bind an EIP to or unbind one
from a graph instance.

● JDBC URL (Private Network): Configure this parameter when the JDBC driver
executor and the graph instance are in the same private network.

● JDBC URL (Public Network): Configure this parameter when the JDBC driver
executor can access the graph instance (with an EIP bound) through the
Internet.

Graph Engine Service
User Guide 7 Viewing Graph Tasks

2024-11-30 92

8 Configuring Permissions

8.1 Configuring Granular Permissions
GES graph instances support granular permission control. You can set the traverse,
read, and write permissions for specific properties of specific labels. You are
allowed to manage these permissions of a specific label or property of a graph
and grant them to a user group.

NO TE

● This function allows you to set granular permissions for graphs of version 2.2.21 or later.
You can upgrade a graph of an earlier version to 2.2.21 or a later version and then set
granular permissions.

● Configuring fine-grained permissions for the graph requires IAM user viewing
permissions and GES Manager or higher permissions. If there is no IAM user viewing
permission, refer to User Details to import IAM users.

Procedure
1. Before setting granular permissions, configure the user group first. For details,

see Configuring a User Group.

2. In the navigation pane, choose Granular Permissions > Permission
Configuration.

3. On the Permission Configuration page, you can view the graph name,
permission status, enabling time, and operations that can be performed on a
graph in the Running status.

NO TE

1. Only graphs in the Running status are displayed on this page.

2. You can set permissions only when its status is Disabled.

3. You can search for graphs by their names in the upper right corner of the page.

4. Select the graph for which you want to set permission and click Set in the
Operation column. The Set Permission page is displayed. You can create
metadata permissions and granular permissions on this page.

Graph Engine Service
User Guide 8 Configuring Permissions

2024-11-30 93

5. Click Create under Metadata Write Permission to create permission. After
the metadata write permission is created, all labels of the metadata can be
modified.

6. Click Create Policy under Granular Permission Policy to set granular
permissions for a graph. You can set label- and property-level graph
permissions and grant them to user groups.
– Policy Name: You can set a name or use the default name.
– View: You can configure permissions in form or code view.
– Permissions: You can select labels whose traversal permission will be

granted to a certain group of users. You can set read and write
permissions of the label properties.

NO TE

To use the Cypher query function, you need to configure the metadata
permission and select the read and write permissions for all labels (including the
default label __DEFAULT__) when configuring the graph permission.

7. Click Save. The Set Permission page is displayed. You can view the created
permission policy in the Granular Permission Policy pane.

NO TE

In this case, the Associate User Group in the Operation column is unavailable. You
need to enable granular permissions before associating the policy with a user group.

8. Click Enable Permissions in the upper right corner of the page to enable
fine-grained permissions for the graph. Alternatively, you can return to the
Permission Configuration page, locate the graph for which the fine-grained
permission has been set, and click Enable in the Operation column. The
permission status changes to Enabled.

9. Click Set in the Operation column to associate the created granular
permission with a user group.

10. Click OK. On the Granular Permission Policy pane, you can view the number
of users who have been granted the permission.

8.2 User Groups
You can create and manage user groups, and check whether a user group has
been associated with permissions.

The procedure is as follows:

1. On the User Groups page, click Create User Group in the upper right corner.
The Create User Group page is displayed.

2. Set the user group name and add group members.
– Name: Set a name for the user group or use the default name.
– Members: All IAM users created under your account are displayed in this

area. Select members you want to add to the user group. The selected
members are displayed on the right.

▪ Click on the left of User/ID to view all group members at a time
or clear all selected group members.

Graph Engine Service
User Guide 8 Configuring Permissions

2024-11-30 94

▪ Click on the left of User/ID to select all users on the current page.

NO TE

If the IAM user is not found due to insufficient permissions, manually import the
IAM user by referring to User Details.

3. Click Save in the lower right corner. The user group is created. The created
user group is displayed on the User Groups page. You can edit or delete the
user group.

NO TE

You are not allowed to delete user groups that have been associated with granular
permissions.

8.3 User Details
You can view the granular permissions of all IAM users created within your
account.

The procedure is as follows:

1. On the User Permissions page, click next to the target username to view
it fine-grained permissions.

2. Click the permission name to view the details.
3. If you do not have such permission, you can click Import IAM User in the

upper right corner to manually import IAM users.
In the Import IAM User dialog box, enter the ID and username of the IAM
user to be added and click OK. The system will add the IAM user to GES so
that the IAM user can be selected in the user group.

Graph Engine Service
User Guide 8 Configuring Permissions

2024-11-30 95

9 O&M Monitoring and Alarm Reporting

9.1 Monitoring Metrics
By using the O&M monitoring function of the graph instance, you can check the
instance status, available resources, and real-time resource consumption.

Table 9-1 lists the monitoring metrics for GES.

Table 9-1 GES monitoring metrics

Monitor
ed
Object

Metric Description Value
Range

Monitor
ing
Period
(Origin
al
Metric)

Instance
overview
metrics

Cluster
Information

Size and CPU architecture String -

Cluster
Capacity

Total and used vertices and
edges, and usage

≥ 0 Real-
time

Cluster Node Node type, available
quantity, and total quantity

≥ 0 Real-
time

Cluster
Request
Statistics

Number of waiting and
running read and write
requests on an instance

≥ 0 Real-
time

Instance
alarm
metrics

Alarm
Statistics

Number of critical, major,
minor, and info alarms on
an instance

≥ 0 5 min

Instance
workloa
d
metrics

QPS Number of requests
processed by an instance
per second

≥ 0 5 min

Graph Engine Service
User Guide 9 O&M Monitoring and Alarm Reporting

2024-11-30 96

Monitor
ed
Object

Metric Description Value
Range

Monitor
ing
Period
(Origin
al
Metric)

Resourc
e
consum
ption
metrics
of graph
instance
s

Average CPU
Usage

Average CPU usage of the
active node

0%–100% 5 min

Memory
Usage

Average memory usage of
the active node

0%–100% 5 min

Disk Usage Average disk usage of the
active node

0%–100% 5 min

Disk I/O
Usage

Average disk I/O usage of
the active node

0%–100% 5 min

Network I/O
Usage

Average network I/O usage
of the active node

0%–100% 5 min

Overvie
w

Node Name Name of a node String -

CPU Usage
(%)

CPU usage of a node 0%–100% 5 min

Memory
Usage (%)

Memory usage of a node 0%–100% 5 min

Average Disk
Usage (%)

Disk usage of a node 0%–100% 5 min

IP Address Service IP address of a
node

String 5 min

Disk I/O
(KB/S)

Disk I/O of a node, in KB/s ≥ 0KB/s 5 min

TCP Protocol
Stack
Retransmissio
n Rate (%)

Retransmission rate of TCP
packets per unit time

0%–100% 5 min

Status Status of a node Running/
Faulty

5 min

Disks Node Name Name of a node String 5 min

Disk Name Name of a disk on a node String 5 min

Disk Capacity
(GB)

Capacity of a disk on a
node, in GB

≥ 0 GB 5 min

Disk Usage
(%)

Disk usage of a node 0%–100% 5 min

Graph Engine Service
User Guide 9 O&M Monitoring and Alarm Reporting

2024-11-30 97

Monitor
ed
Object

Metric Description Value
Range

Monitor
ing
Period
(Origin
al
Metric)

Disk Read
Rate (KB/S)

Disk read rate of a node, in
KB/s

≥ 0KB/S 5 min

Disk Write
Rate (KB/S)

Disk write rate of a node,
in KB/s

≥ 0KB/S 5 min

I/O Wait
Time (ms)

Average waiting time for
each I/O request, in ms

≥ 0 ms 5 min

I/O Service
Time (ms)

Average processing time
for each I/O request, in ms

≥ 0 ms 5 min

I/O Usage
(%)

Disk I/O usage of a host 0%–100% 5 min

Network
s

Node Name Name of a node String 5 min

NIC Name Name of the NIC on a
node

String 5 min

NIC Status NIC status up/down 5 min

NIC Speed Working rate of a NIC, in
Mbit/s

≥ 0 5 min

Received
Packets

Number of packets
received by a NIC

≥ 0 5 min

Transmitted
Packets

Number of packets
transmitted by a NIC

≥ 0 5 min

Lost Received
Packets

Number of lost packets
received by a NIC

≥ 0 5 min

Receive Rate
(KB/S)

Number of bytes received
by a NIC per unit time, in
KB/s

≥ 0KB/s 5 min

Transmit Rate
(KB/S)

Number of bytes
transmitted by a NIC per
unit time, in KB/s

≥ 0KB/s 5 min

Perform
ance

Cluster CPU
Usage

Average CPU usage of the
active node

0%–100% 5 min

Cluster
Memory
Usage

Average memory usage of
the active node

0%–100% 5 min

Graph Engine Service
User Guide 9 O&M Monitoring and Alarm Reporting

2024-11-30 98

Monitor
ed
Object

Metric Description Value
Range

Monitor
ing
Period
(Origin
al
Metric)

Cluster Disk
Usage

Average disk usage of the
active node

0%–100% 5 min

Cluster Disk
I/O

Average disk I/O of the
active node

0%–100% 5 min

Cluster
Network I/O

Average network I/O of the
NIC of the active node

0%–100% 5 min

Tomcat
Connection
Usage

HTTP connection usage of
the active node

0%–100% 5 min

Cluster Swap
Disk Usage

Swap partition disk usage
of the active node

0%–100% 5 min

JVM Heap
Memory
Usage

JVM heap memory usage
of the active node

0%–100% 5 min

Read
Requests in
Running
Queue

Number of running read
requests on the current
instance

≥ 0 5 min

Read
Requests in
Blocked
Queue

Number of blocked read
requests on the current
instance

≥ 0 5 min

Real-
Time
Queries

Request ID ID of the current query
request

String Real-
time

Job Name Name of the current query
job

String Real-
time

Request
Parameters

Request parameters for the
current query

String Real-
time

Progress Progress of the current
query

0%–100% Real-
time

Blocking
Duration (S)

Blocking duration of the
current query, in seconds

≥ 0 Real-
time

Started Start time of the current
query

String Real-
time

Ended End time of the current
query

String Real-
time

Graph Engine Service
User Guide 9 O&M Monitoring and Alarm Reporting

2024-11-30 99

Monitor
ed
Object

Metric Description Value
Range

Monitor
ing
Period
(Origin
al
Metric)

Running
Duration

Running duration of the
current query, in seconds

≥ 0 Real-
time

Historica
l
Queries

Job ID ID of a historical query job String Real-
time

Type Type of a historical query
job

String Real-
time

Original
Request

Original request for a
historical query

String Real-
time

Status Status of a historical query
job

String Real-
time

Progress Execution progress of a
historical query job

0%–100% Real-
time

Start Time Start time of a historical
query job

String Real-
time

End Time End time of a historical
query job

String Real-
time

Running
Result

Execution results of a
historical query job

String Real-
time

9.2 Graph Instance O&M Monitoring
GES offers a multi-dimensional O&M monitoring interface that guarantees the
smooth operations of graph instances. This feature gathers, monitors, and
analyzes disk, network, and OS metrics utilized by graph instances, along with key
cluster performance metrics. It promptly identifies significant database faults and
performance issues and provides recommendations to optimize and resolve them.

NO TE

● The graph instance O&M monitoring dashboard supports only graphs of version 2.3.17
or later.

● The ten-thousand-edge size is for development learning and does not support the O&M
monitoring dashboard.

● Database edition graph databases do not support graph instance monitoring.

O&M Monitoring Page
1. Log in to the GES management console. In the navigation pane on the left,

choose Graph Management.

Graph Engine Service
User Guide 9 O&M Monitoring and Alarm Reporting

2024-11-30 100

2. In the graph list, locate the target graph instance, click More in the
Operation column, and select View Metric to access the Instance Overview
page. For details about monitoring metrics, see Monitoring Metrics.

Figure 9-1 Instance Overview page

Instance Overview
On the Instance Overview page of a graph instance, you can check the graph
instance status, real-time resource consumption, alarm statistics, and service
workload. The functions of these areas are as follows:

● Graph Cluster Status
In this area, you can check the basic information, cluster capacity, and
number of requests of the current graph instance.
a. Cluster Information: includes graph size and CPU architecture.
b. Cluster Capacity: includes the number of used and total vertices and

edges, as well as the usage.
c. Cluster Node: includes the number of available/total CNs/DNs.
d. Cluster Request Statistics: includes the number of waiting read requests,

running read requests, waiting write requests, and running write requests.

Figure 9-2 Graph Cluster Status

Graph Engine Service
User Guide 9 O&M Monitoring and Alarm Reporting

2024-11-30 101

● Alarm Statistics
In this area, you can check all alarms that are not cleared for the current
instance and all alarms generated for the instance in the last seven days.

Figure 9-3 Alarm Statistics

● Instance Resources
In this area, you can check the resource usage of the current instance,
including the CPU usage, disk I/O, disk usage, memory usage, and network
I/O. You can click a resource metric to view its change trend in the last 72
hours and the top 5 nodes with the highest usage of the resource at the
current time.

Figure 9-4 Instance Resources

● Workload
In this area, you can check the change trend of the database service load
metric QPS in the last 72 hours.

Graph Engine Service
User Guide 9 O&M Monitoring and Alarm Reporting

2024-11-30 102

Figure 9-5 Workload

9.3 Monitoring

9.3.1 Nodes
In the navigation pane on the left of the O&M monitoring page, choose
Monitoring > Nodes. The node monitoring page is displayed, showing the real-
time consumption of nodes, memory, disks, disk I/O, and network I/O.

● Overview

On the Overview page, you can check the key resources of a specified node
based on the node name, including the node name, CPU usage (%), memory
usage (%), average disk usage (%), IP address, disk I/O (KB/s), TCP protocol
stack retransmission rate (%), network I/O (KB/s), node status, and node
monitoring status.

Figure 9-6 Overview page

You can click Monitor on the right of the row where a specified node is
located to access the monitoring overview page and check the performance
metric topology of the node in a specified period.

The period options are Last 1 hour, Last 3 hour, Last 12 hour, Last 24 hour,
and Last 3 days. If you stay on the page for a long time, you can click
Refresh in the upper right corner to update the monitoring data.

Graph Engine Service
User Guide 9 O&M Monitoring and Alarm Reporting

2024-11-30 103

Figure 9-7 Node monitoring page

● Disks
On the Disks tab page, you can check the real-time disk usage of a node
based on the node name and disk name. The metrics include Node Name,
Disk Name, Disk Type, Disk Capacity (GB), Disk Usage (%), Disk Read
Rate (KB/s), Disk Write Rate (KB/s), I/O Wait Time (ms), I/O Service Time
(ms), I/O Usage (%), and Monitor.
The disk types include system disk, data disk, log disk, swap partition disk,
and backup disk.

Figure 9-8 Disks tab page

You can click Monitor on the right of the row where a specified node is
located to access the monitoring overview page and check the performance
metric topology of the disk in a specified period.
The options are Last 1 hour, Last 3 hour, Last 12 hour, Last 24 hour, and
Last 3 days. If you stay on the page for a long time, you can click Refresh in
the upper right corner to update the monitoring data.

Graph Engine Service
User Guide 9 O&M Monitoring and Alarm Reporting

2024-11-30 104

Figure 9-9 Disks page

NO TE

According to the disk usage displayed on the page, the sum of the used disk space and
available disk space is not equal to the total disk space. This is because a small
amount of space is reserved in each default partition for system administrators to use.
Even if common users have run out of space, system administrators can log in to the
system and use their space required for solving problems.
The disk capacity is collected by running the df command on Linux. The following is
an example:

/dev/sda4: Used(5757444) + Available(540228616) != Total(569616888)

The parameters are as follows:
● Filesystem: path name of the device file corresponding to the file system.

Generally, it is a hard disk partition.
● IK-blocks: number of data blocks (1,024 bytes) in a partition.
● Used: number of data blocks used by the disk.
● Available: number of available data blocks on the disk.
● Use%: percentage of the space used by common users. Even if the space is used

up, the partition still reserves the space for system administrators.
● Mounted on: mount point of the file system.

● Networks
On the Networks tab page, you can check the real-time network resource
consumption of a node based on the node and NIC name. The metrics include
Node Name, NIC Name, NIC Status, Lost Received Packets, Receive Rate
(KB/S), Transmit Rate (KB/S), and Monitor.

Graph Engine Service
User Guide 9 O&M Monitoring and Alarm Reporting

2024-11-30 105

Figure 9-10 Networks tab page

You can click Monitor on the right of the row where a specified node is
located to access the monitoring overview page and check the performance
metric topology of the network in a specified period.
The options are Last 1 hour, Last 3 hour, Last 12 hour, Last 24 hour, and
Last 3 days. If you stay on the page for a long time, you can click Refresh in
the upper right corner to update the monitoring data.

Figure 9-11 Networks page

9.3.2 Performance
In the navigation pane on the left of the O&M monitoring page, choose
Monitoring > Performance. The performance monitoring page displays the trends
of the following performance metrics:
● CPU Usage (%)
● Memory Usage (%)
● Disk Usage (%)
● Disk I/O (KB/s)
● Network I/O (KB/s)
● Tomcat Connection Usage (%)
● Swap Disk Usage

Graph Engine Service
User Guide 9 O&M Monitoring and Alarm Reporting

2024-11-30 106

● JVM Heap Memory Usage

● Read Requests in Running Queue

● Read Requests in Blocked Queue

You can select a time range to check the performance trends within this range.

The options are Last 1 hour, Last 3 hour, Last 12 hour, Last 24 hour, and Last 3
days. If you stay on the page for a long time, you can click Refresh in the upper
right corner to update the monitoring data.

Figure 9-12 Performance page

9.3.3 Real-Time Queries
In the navigation pane on the left of the O&M monitoring page, choose
Monitoring > Real-Time Queries. The Real-Time Queries page is displayed,
showing the real-time information about all queries running on the instance. The
information includes Request ID, Job Name, Request Parameters, Progress,
Blocking Duration (S), Started, Ended, and Running Duration.

Figure 9-13 Real-Time Queries page

9.3.4 Historical Queries
In the navigation tree on the left of the O&M monitoring page, choose
Monitoring > History Queries. The History Queries page is displayed, showing
details about historical asynchronous tasks running on the graph instance (the
same as those displayed in the task center on the service plane).

Graph Engine Service
User Guide 9 O&M Monitoring and Alarm Reporting

2024-11-30 107

Figure 9-14 Historical Queries page

9.4 Monitoring Clusters Using Cloud Eye
This section describes metrics reported by GES to Cloud Eye as well as their
namespaces, lists, and dimensions. You can use APIs provided by Cloud Eye to
query the metric information generated for GES.

Namespace
SYS.GES

Monitoring Metrics

Table 9-2 GES metrics

Metric ID Metric Description Value
Range

Monitored
Object

ges001_vertex_
util

Vertex
Capacity
Usage

Vertex usage in a graph
instance. The value is
the ratio of used
vertices to the total
vertices.
Unit: %

0–100
Type:
float

GES
instance

ges002_edge_ut
il

Edge
Capacity
Usage

Edge usage of a graph
instance. The value is
the ratio of the used
edges to the total
edges.
Unit: %

0–100
Type:
float

GES
instance

ges003_average
_import_rate

Average
Import
Rate

Average rate of
importing vertices or
edges to a graph
instance
Unit: count/s

0–
400000
Type:
float

GES
instance

ges004_request
_count

Request
Quantity

Number of requests
received by a graph
instance
Unit: count

≥ 0
Type:
integer

GES
instance

Graph Engine Service
User Guide 9 O&M Monitoring and Alarm Reporting

2024-11-30 108

Metric ID Metric Description Value
Range

Monitored
Object

ges005_average
_response_time

Average
Response
Time

Average response time
of requests received by
a graph instance
Unit: ms

≥ 0
Type:
integer

GES
instance

ges006_min_res
ponse_time

Minimum
Response
Time

Minimum response time
of requests received by
a graph instance
Unit: ms

≥ 0
Type:
integer

GES
instance

ges007_max_res
ponse_time

Maximum
Response
Time

Maximum response
time of requests
received by a graph
instance
Unit: ms

≥ 0
Type:
integer

GES
instance

ges008_read_ta
sk_pending_que
ue_size

Length of
the
Waiting
Queue for
Read
Tasks

Length of the waiting
queue for read requests
received by a graph
instance. This metric is
used to view the
number of read requests
waiting in the queue.
Unit: count

≥ 0
Type:
integer

GES
instance

ges009_read_ta
sk_pending_ma
x_time

Maximum
Waiting
Duration
of Read
Tasks

Maximum waiting
duration of read
requests received by a
graph instance
Unit: ms

≥ 0
Type:
integer

GES
instance

ges010_pending
_max_time_
read_task_type

Type of
the Read
Task That
Waits the
Longest

Type of the read request
that waits the longest in
a graph instance. You
can find the
corresponding task
name in GES
documents.

≥ 1
Type:
integer

GES
instance

ges011_read_ta
sk_running_que
ue_size

Length of
the
Running
Queue for
Read
Tasks

Length of the running
queue for read requests
received by a graph
instance. This metric is
used to view the
number of running read
requests.
Unit: count

≥ 0
Type:
integer

GES
instance

Graph Engine Service
User Guide 9 O&M Monitoring and Alarm Reporting

2024-11-30 109

Metric ID Metric Description Value
Range

Monitored
Object

ges012_read_ta
sk_running_max
_time

Maximum
Running
Duration
of Read
Tasks

Maximum running
duration of read
requests received by a
graph instance
Unit: ms

≥ 0
Type:
integer

GES
instance

ges013_running
_max_time_
read_task_type

Type of
the Read
Task That
Runs the
Longest

Type of the read request
that runs the longest in
a graph instance. You
can find the
corresponding task
name in GES
documentation.

≥ 1
Type:
integer

GES
instance

ges014_write_ta
sk_pending_que
ue_size

Length of
the
Waiting
Queue for
Write
Tasks

Length of the waiting
queue for write requests
received by a graph
instance. This metric is
used to view the
number of write
requests waiting in the
queue.
Unit: count

≥ 0
Type:
integer

GES
instance

ges015_write_ta
sk_pending_ma
x_time

Maximum
Waiting
Duration
of Write
Tasks

Maximum waiting
duration of write
requests received by a
graph instance
Unit: ms

≥ 0
Type:
integer

GES
instance

ges016_pending
_max_time_
write_task_type

Type of
the Write
Task That
Waits the
Longest

Type of the write
request that waits the
longest in a graph
instance. You can find
the corresponding task
name in GES
documents.

≥ 1
Type:
integer

GES
instance

ges017_write_ta
sk_running_que
ue_size

Length of
the
Running
Queue for
Write
Tasks

Length of the running
queue for write requests
received by a graph
instance. This metric is
used to view the
number of running
write requests.
Unit: count

≥ 0
Type:
integer

GES
instance

Graph Engine Service
User Guide 9 O&M Monitoring and Alarm Reporting

2024-11-30 110

Metric ID Metric Description Value
Range

Monitored
Object

ges018_write_ta
sk_running_max
_time

Maximum
Running
Duration
of Write
Tasks

Maximum running
duration of write
requests received by a
graph instance
Unit: ms

≥ 0
Type:
integer

GES
instance

ges019
_running_max_t
ime_
write_task_type

Type of
the Write
Task That
Runs the
Longest

Type of the write
request that runs the
longest in a graph
instance. You can find
the corresponding task
name in GES
documentation.

≥ 1
Type:
integer

GES
instance

ges020_comput
er_resource_usa
ge

Computin
g
Resource
Usage

Compute resource usage
of each graph instance
Unit: %

0–100
Type:
float

GES
instance

ges021_memor
y_usage

Memory
Usage

Memory usage of each
graph instance
Unit: %

0–100
Type:
float

GES
instance

ges022_iops IOPS Number of I/O requests
processed by each graph
instance per second
Unit: count/s

≥ 0
Type:
integer

GES
instance

ges023_bytes_in Network
Input
Throughp
ut

Data input to each
graph instance per
second over the
network
Unit: byte/s

≥ 0
Type:
float

GES
instance

ges024_bytes_o
ut

Network
Output
Throughp
ut

Data sent to the
network per second
from each graph
instance
Unit: byte/s

≥ 0
Type:
float

GES
instance

ges025_disk_us
age

Disk
Usage

Disk usage of each
graph instance
Unit: %

0–100
Type:
float

GES
instance

ges026_disk_tot
al_size

Total Disk
Size

Total data disk space of
each graph instance
Unit: GB

≥ 0
Type:
float

GES
instance

Graph Engine Service
User Guide 9 O&M Monitoring and Alarm Reporting

2024-11-30 111

Metric ID Metric Description Value
Range

Monitored
Object

ges027_disk_us
ed_size

Disk
Space
Used

Used data disk space of
each graph instance
Unit: GB

≥ 0
Type:
float

GES
instance

ges028_disk_rea
d_throughput

Disk Read
Throughp
ut

Data volume read from
the disk in a graph
instance per second
Unit: byte/s

≥ 0
Type:
float

GES
instance

ges029_disk_wri
te_throughput

Disk Write
Throughp
ut

Data volume written to
the disk in a graph
instance per second
Unit: byte/s

≥ 0
Type:
float

GES
instance

ges030_avg_dis
k_sec_per_read

Average
Time per
Disk Read

Average time per disk
read for a graph
instance
Unit: second

≥ 0
Type:
float

GES
instance

ges031_avg_dis
k_sec_per_write

Average
Time per
Disk Write

Average time per disk
write for a graph
instance
Unit: second

≥ 0
Type:
float

GES
instance

ges032_avg_dis
k_queue_length

Average
Disk
Queue
Length

Average I/O queue
length of the disk in a
graph instance
Unit: count

≥ 0
Type:
integer

GES
instance

Dimensions

Key Value

instance_id GES instance

Mapping Between Task Types and Names

Table 9-3 Mapping between task types and names

Type Name

100 Querying vertices

101 Creating a vertex

102 Deleting a vertex

Graph Engine Service
User Guide 9 O&M Monitoring and Alarm Reporting

2024-11-30 112

Type Name

103 Modifying a vertex property

104 Adding a vertex label

105 Deleting a vertex label

200 Querying edges

201 Creating an edge

202 Deleting an edge

203 Modifying an edge property

300 Querying schema details

301 Adding a label

302 Modifying a label

303 Querying a label

304 Modifying a property

400 Querying graph details

401 Clearing graphs

402 Incrementally importing graph data online

403 Creating a graph

405 Deleting a graph

406 Exporting graphs

407 filtered_khop

408 Querying path details

409 Incrementally importing graph data offline

500 Creating a graph backup

501 Restoring a graph from a backup

601 Creating an index

602 Querying indexes

603 Updating an index

604 Deleting an index

700 Running an algorithm

Graph Engine Service
User Guide 9 O&M Monitoring and Alarm Reporting

2024-11-30 113

Viewing Instance Monitoring Information
1. Log in to the GES management console and choose Graph Management.
2. In the graph list, locate the row that contains the target graph, choose More,

and select View Metric to access the Cloud Eye management console. By
default, the graph instance monitoring information is displayed.
You can select a monitoring metric name and time range to check the
performance curve.

Creating an Alarm Rule
By setting alarm rules for GES, you can customize monitoring objects and
notification policies to promptly understand the operational status of GES and
serve as an early warning.

Alarm rule settings for GES include parameters such as alarm rule name,
monitoring object, monitoring metrics, alarm threshold, monitoring cycle, and
notification sending.

This part describes how to set an alarm rule for GES.

1. Log in to the GES management console and choose Graph Management
from the navigation pane on the left.

2. Locate the row containing the target instance, choose More in the Operation
column, and select View Metric to access the Cloud Eye management console
and check the GES monitoring information.

Figure 9-15 Selecting View Metrics

NO TE

Ensure that the status of the instance whose monitoring information you want to view
is Running. Otherwise, you cannot create an alarm.

3. In the navigation pane on the left of the Cloud Eye management console,
choose Alarm Management > Alarm Rules. On the page displayed, click
Create Alarm Rule in the upper right corner or in the middle.

Graph Engine Service
User Guide 9 O&M Monitoring and Alarm Reporting

2024-11-30 114

4. On the Create Alarm Rule page, set parameters as prompted.

a. Setting alarm parameters

Figure 9-16 Setting parameters

Table 9-4 Alarm parameters

Paramet
er

Description Example Value

Alarm
Type

Alarm type the alarm rule applies
to. The value can be Metric or
Event.

Metric

Resource
Type

Name of the cloud service the
alarm rule is created for

Graph Engine Service

Dimensio
n

Metric dimension of the selected
resource type. Select Graph
Instance.

Graph Instance

Monitori
ng Scope

Resource scope the alarm rule
applies to. Select Specified
resources and select one or more
monitored objects. Click Select
Specific Resources and select the
cluster instance you have created.

Specific resources

Graph Engine Service
User Guide 9 O&M Monitoring and Alarm Reporting

2024-11-30 115

Paramet
er

Description Example Value

Method You can create an alarm rule by
using the template or manually
creating it.
● If no alarm template is

available, set Method to Create
manually and configure related
parameters to create an alarm
rule.

● If you have available alarm rule
templates, set Method to Use
template, so that you can use
a template to quickly create
alarm rules.

Create manually

Method There are three options: Associate
template, Use existing template,
and Configure manually.

Associate template

Template This parameter is available only
when Use template is selected.
Select the template to be used. If
no alarm template is available,
click Create Custom Template to
create one that meets your
requirements.

-

Alarm
Policy

This parameter is available only
when Configure manually is
selected for Method.
Set the policy that triggers an
alarm. For example, trigger an
alarm if the CPU usage equals to
or is greater than 80% for 3
consecutive periods.
For details about GES monitoring
metrics, see Monitoring Metrics.

-

Alarm
Severity

Alarm severity, which can be
Critical, Major, Minor, or
Informational.

Major

b. Configure the alarm notification parameters as prompted.

Graph Engine Service
User Guide 9 O&M Monitoring and Alarm Reporting

2024-11-30 116

Figure 9-17 Setting alarm notification parameters

Table 9-5 Alarm notification parameters

Parame
ter

Description Example
Value

Alarm
Notifica
tion

Whether to send email, SMS, HTTP, or HTTPS
notifications to users when an alarm is
triggered
You can enable (recommended) or disable this
function.

Enable this
function

Notifica
tion
Recipie
nt

You can select Notification group or Topic
subscription.

Topic
subscription

Notifica
tion
Object

This parameter is mandatory when
Notification Recipient is set to Topic
subscription.
Name of the topic the alarm notification is to
be sent to. If you have enabled Alarm
Notification, select a topic. If no desirable
topics are available, create one first,
whereupon the SMN service is invoked.
For details about how to create a topic, see .

SMN topic

Notifica
tion
Group

This parameter is mandatory when
Notification Recipient is set to Notification
group.
You can select or create a notification group.
After creating a notification group, you need
to click Add Notification Recipient in the
Operation column of the notification group
list to add group members and notification
methods.

Notification
group
name

Graph Engine Service
User Guide 9 O&M Monitoring and Alarm Reporting

2024-11-30 117

Parame
ter

Description Example
Value

Notifica
tion
Templat
e

You can select a system template or create a
custom notification template.

System
template

Notifica
tion
Window

Notifications are sent only within the
notification window specified in the alarm
rule.
For example, if Notification Window is set to
00:00–08:00, Cloud Eye sends notifications
only within this period.

-

Trigger
Conditi
on

Condition for triggering the alarm notification.
You can select Generated alarm (when an
alarm is generated), Cleared alarm (when an
alarm is cleared), or both.

-

5. Click Create. After the alarm rule is created, if the metric data reaches the

specified threshold, Cloud Eye will immediately inform you that an exception
has occurred.

Transferring Data to OBS
On Cloud Eye, raw metric data is only stored for two days. However, if you
subscribe to OBS, you can synchronize the raw data and extend the storage
period.

Graph Engine Service
User Guide 9 O&M Monitoring and Alarm Reporting

2024-11-30 118

10 Algorithms

10.1 Algorithm List
To meet the requirements of various scenarios, GES provides extensive basic graph
algorithms, graph analytics algorithms, and graph metrics algorithms. The
following table lists the algorithms:

Table 10-1 Algorithm List

Algorithm Description

PageRank PageRank, also known as web page ranking, is a hyperlink
analysis algorithm used to rank web pages (nodes) based on
their search engine results. PageRank is a way of measuring the
relevance and importance of web pages (nodes).

PersonalRank PersonalRank is also called Personalized PageRank. It inherits
the idea of the classic PageRank algorithm and uses the graph
link structure to recursively calculate the importance of each
node. However, unlike the PageRank algorithm, to ensure that
the access probability of each node in the random walk can
reflect user preferences, the PersonalRank algorithm returns
each hop to the source node at a (1-alpha) probability during
random walk. Therefore, the relevance and importance of
network nodes can be calculated based on the source node (the
higher the PersonalRank value, the higher the correlation/
importance of the source node).

K-core K-core is a classic graph algorithm used to calculate the number
of cores of each node. The calculation result is one of the most
commonly used reference values for determining the
importance of a node so that the propagation capability of the
node can be better understood.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 119

Algorithm Description

K-hop K-hop is an algorithm used to search all nodes in the k layer
that are associated with the source node through breadth-first
search (BFS). The found sub-graph is the source node's ego-net.
The K-hop algorithm returns the number of nodes in the ego-
net.

Shortest Path The Shortest Path algorithm is used to find the shortest path
between two nodes in a graph.

All Shortest
Paths

The All Shortest Paths algorithm is used to find all shortest
paths between two nodes in a graph.

Filtered
Shortest Path

This algorithm searches for the shortest path that meets the
filter criteria between vertices. If there are multiple shortest
paths, any one of them is returned.

SSSP The SSSP algorithm finds the shortest paths from a specified
node (source node) to all other nodes.

Shortest Path
of Vertex Sets

The Shortest Path of Vertex Sets algorithm finds the shortest
path between two vertex sets. It can be used to analyze the
relationships between blocks in scenarios such as Internet social
networking, financial risk control, road network transportation,
and logistics delivery.

n-Paths The n-Paths algorithm is used to find the n paths between two
vertices on the k layer of a graph. It applies to scenarios such as
relationship analysis, path design, and network planning.

Closeness
Centrality

Closeness centrality is the average distance from a node to all
other reachable nodes. It can be used to measure the time for
transmitting information from this node to other nodes. A small
Closeness Centrality within a node corresponds to a central
location of the node.

Label
Propagation

The Label Propagation algorithm is a graph-based semi-
supervised learning method. Its basic principle is to predict the
label information about unlabeled nodes using that of the
labeled nodes. This algorithm can create graphs based on the
relationships between samples. Nodes include labeled data and
unlabeled data, and the edge indicates the similarity between
two nodes. Node labels are transferred to other nodes based on
the similarity. Labeled data is like a source used to label
unlabeled data. Greater node similarity corresponds to an easier
label propagation.

Louvain Louvain is a modularity-based community detection algorithm
with high efficiency and effect. It detects hierarchical
community structures and aims to maximize the modularity of
the entire community network.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 120

Algorithm Description

Link
Prediction

This algorithm is used to calculate the similarity between two
nodes and predict their relationship based on the Jaccard
measurement method.

Node2vec By invoking the Word2vec algorithm, the Node2vec algorithm
maps nodes in the network to the Euclidean space, and uses
vectors to represent the node characteristics. The Node2vec
algorithm generates random steps from each node using the
rollback parameter P and forward parameter Q. It combines BFS
and DFS. The rollback probability is proportional to 1/P, and the
forward probability is proportional to 1/Q. Multiple random
steps are generated to reflect the network structures.

Real-time
Recommenda
tion

The Real-time Recommendation algorithm is based on the
random walk model and is used to recommend nodes that are
similar (have similar relationships or preferences) to the input
node. This algorithm can be used to recommend similar
products based on historical browsing data or recommend
potential friends with similar preferences.

Common
Neighbors

Common Neighbors is a basic graph analysis algorithm that
obtains the neighboring nodes shared by two nodes and further
speculate the potential relationship and similarity between the
two nodes. For example, it can intuitively discover shared
friends in social occasions or products that interest both nodes
in the consumption field.

Connected
Component

A connected component stands for a sub-graph, in which all
nodes are connected with each other. Path directions are
involved in the strongly connected components and are not
considered in the weakly connected components.
NOTE

This algorithm generates weakly connected components.

Degree
Correlation

The Degree Correlation algorithm calculates the Pearson
correlation coefficient between the source vertex degree and
the target vertex degree of each edge. It is used to indicate
whether the high-degree nodes are connected to other high-
degree nodes in a graph.

Triangle
Count

The Triangle Count algorithm counts the number of triangles in
a graph without considering the edge directions. More triangles
mean higher node association degrees and closer organization
relationships.

Clustering
Coefficient

The clustering coefficient is a measure of the degree to which
nodes in a graph tend to cluster together. Evidence suggests
that in most real-world networks, and in particular social
networks, nodes tend to create tightly knit groups characterized
by a relatively high density of ties.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 121

Algorithm Description

Betweenness
Centrality

Betweenness centrality is a measure of centrality in a graph
based on shortest paths. The Betweenness Centrality algorithm
calculates shortest paths that pass through a vertex.

Edge
Betweenness
Centrality

The Edge Betweenness Centrality algorithm calculates shortest
paths that pass through an edge.

Origin-
Destination
Betweenness
Centrality

The Origin-Destination Betweenness Centrality algorithm
calculates shortest paths that pass through a (an) vertex/edge,
with the origin and destination specified.

Circle
Detection
with a Single
Vertex

This algorithm solves a classic graph problem: detecting loops in
a graph. Vertices on looped paths reflect the importance of the
vertices. This algorithm is suitable for transportation analysis
and financial risk control.

Common
Neighbors of
Vertex Sets

This algorithm obtains vertex set neighbors, that are, the
intersection of two vertex sets (groups). They are objects that
are associated with both sets, for example, common friends,
common products of interest, and persons contacting with both
communities. You can use neighbors to further speculate
potential relationships and the degree of the connection
between two vertices.

All Shortest
Paths of
Vertex Sets

This algorithm is used to discover all shortest paths between
two vertex sets. It can be used to analyze the relationships
between blocks in scenarios such as social networking, financial
risk control, road networks and transportation, and logistics
delivery.

Filtered Circle
Detection

This algorithm searches for all circles that meet a specified filter
criteria in the graph. It is applicable to scenarios such as
detecting round-trip transfers and anti-money laundering for
financial risk control, locating abnormal links in network routes,
and risk identification in enterprise finance guarantee.

Subgraph
Matching

This algorithm is used to find all subgraphs of a given small
graph that is isomorphic to a given large graph. This is a basic
graph query operation and is intended to explore important
substructures of a graph.

Filtered All
Pairs Shortest
Paths

This algorithm is used to search for the shortest path between
any two vertices in the graph that meets the condition. In a
specific application scenario, you need to set a start vertex set
(sources) and end vertex set (targets) as input for this
algorithm. This algorithm returns the required shortest paths
between the start and the end vertex sets.

Filtered All
Shortest
Paths

This algorithm allows you to search query results of the
Shortest Path algorithm for the paths that meet the conditions
between two vertices in a graph.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 122

Algorithm Description

TopicRank The TopicRank algorithm is one of commonly used algorithms
for ranking topics by multiple dimensions. For example, this
algorithm is applicable to rank complaint topics obtained
through a government hotline.

Filtered n-
Paths

The filtered n-Paths algorithm is used to find no more than n k-
hop loop-free paths between the source and target vertices. The
start vertex (source), end vertex (target), number of hops (k),
number of paths (n), and filter criteria (filters) are the
parameters for the algorithm.

Temporal
Paths

Different from path analysis on static graphs, the Temporal
Paths algorithm combines the order of information transmission
on dynamic graphs. The passing time of an edge on a path
must be later than or the same as that of the previous edge,
showing the increment (or non-decrement) of time.

10.2 PageRank

Overview

PageRank, also known as web page ranking, is a hyperlink analysis algorithm used
to rank web pages (nodes) based on their search engine results. PageRank is a
way of measuring the relevance and importance of web pages (nodes).

● If a web page is linked to many other web pages, the web page is of great
importance. That is, the PageRank value is relatively high.

● If a web page with a high PageRank value is linked to another web page, the
PageRank value of the linked web page increases accordingly.

Application Scenarios

This algorithm applies to scenarios such as web page sorting and key role
discovery in social networking.

Parameter Description

Table 10-2 PageRank algorithm parameters

Parameter Mandat
ory

Description Type Value Range Default
Value

alpha No Weight
coefficient
(also called
damping
coefficient)

Double A real number
between 0 and 1
(excluding 0 and
1)

0.85

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 123

Parameter Mandat
ory

Description Type Value Range Default
Value

convergen
ce

No Convergence Double A real number
between 0 and 1
(excluding 0 and
1)

0.00001

max_iterati
ons

No Maximum
iterations

Int 1-2,000 1000

directed No Whether an
edge is
directed

Bool true or false true

NO TE

● alpha determines the jump probability coefficient, also called damping coefficient,
which is a computing control variable in the algorithm.

● convergence indicates the upper limit of the sum of each absolute vertex change
between an iteration and the last iteration. If the sum is less than the value of this
parameter, the computing is considered converged and the algorithm stops.

● When the convergence is set to a large value, the iteration will stop quickly.

Precautions
When the convergence is set to a large value, the iteration will stop quickly.

Example
Select the algorithm in the algorithm area of the graph engine editor. For details,
see Analyzing Graphs Using Algorithms.

Set parameters alpha to 0.85, coverage to 0.00001, max_iterations to 1,000, and
directed to true. The sub-graph formed by top nodes in the calculation result is
displayed on the canvas. The size of a node varies with the PageRank values. The
JSON result is displayed in the query result area.

10.3 PersonalRank

Overview
PersonalRank is also called Personalized PageRank. It inherits the idea of the
classic PageRank algorithm and uses the graph link structure to recursively
calculate the importance of each node. However, unlike the PageRank algorithm,
to ensure that the access probability of each node in the random walk can reflect
user preferences, the PersonalRank algorithm returns each hop to the source node
at a (1-alpha) probability during random walk. Therefore, the relevance and
importance of network nodes can be calculated based on the source node. (The
higher the PersonalRank value, the higher the correlation/importance of the
source node.)

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 124

Application Scenarios

This algorithm applies to fields such as product, friend, and web page
recommendations.

Parameter Description

Table 10-3 PersonalRank algorithm parameters

Paramet
er

Mandato
ry

Descriptio
n

Type Value Range Default
Value

source Yes Node ID String - -

alpha No Weight
coefficient

Doubl
e

A real number
between 0 and 1
(excluding 0 and 1)

0.85

converge
nce

No Convergen
ce

Doubl
e

A real number
between 0 and 1
(excluding 0 and 1)

0.00001

max_iter
ations

No Maximum
iterations

Int 1-2,000 1000

directed No Whether
an edge is
directed

Bool true or false true

NO TE

● alpha determines the jump probability coefficient, also called damping coefficient,
which is a computing control variable in the algorithm.

● convergence defines the sum and upper limit of absolute values of each vertex in each
iteration compared with the last iteration. If the sum is less than the value, the
computing is considered to be converged and the algorithm stops.

Precautions

When the convergence is set to a large value, the iteration will stop quickly.

Example

Select the algorithm in the algorithm area of the graph engine editor. For details,
see Analyzing Graphs Using Algorithms.

Set source to Lee, alpha to 0.85, convergence to 0.00001, max_iterations to
1000, and directed to true. The sub-graph formed by top nodes in the calculation
result is displayed on the canvas. The size of a node varies with the PersonalRank
values. The JSON result is displayed in the query result area.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 125

10.4 K-core

Overview

K-core is a classic graph algorithm used to calculate the number of cores of each
node. The calculation result is one of the most commonly used reference values
for determining the importance of a node so that the propagation capability of
the node can be better understood.

Application Scenarios

This algorithm applies to scenarios such as community discovery and finance risk
control.

Parameter Description

Table 10-4 K-core algorithm parameters

Parame
ter

Mandat
ory

Description Typ
e

Value
Range

Default
Value

k Yes Number of cores
The algorithm returns
nodes whose number
of cores is greater
than or equal to k.

Int Greater
than or
equal to 0

-

Precautions

None

Example

Set parameter k to 10. The sub-graph formed by nodes whose number of cores is
greater than or equal to 10 in the calculation result is displayed on the canvas.
The color of a node varies with the number of cores. The JSON result is displayed
in the query result area.

10.5 K-hop

Overview

K-hop is an algorithm used to search all nodes in the k layer that are associated
with the source node through breadth-first search (BFS). The found sub-graph is
the source node's ego-net. The K-hop algorithm returns the number of nodes in
the ego-net.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 126

Application Scenarios
This algorithm applies to scenarios such as relationship discovery, influence
prediction, and friend recommendation.

Parameter Description

Table 10-5 K-hop algorithm parameters

Parame
ter

Mandat
ory

Description Type Value Range Default
Value

k Yes Number of hops Integer 1-100 -

source Yes Node ID String - -

mode No Direction:
● OUT: Hop

from the
outgoing
edges.

● IN: Hop from
the incoming
edges.

● All: Hop from
edges in both
directions.

String OUT, IN, ALL OUT

Precautions
● A larger k value indicates a wider node coverage area.
● According to the six degrees of separation theory, all people in social

networks will be covered after six hops.
● BFS searches information based on edges.

Example
Select the algorithm in the algorithm area of the graph engine editor. For details,
see Analyzing Graphs Using Algorithms.

Calculate the sub-graph formed by the three hops starting from the Lee node.

Set parameters k to 3, source to Lee, and mode to OUT. The sub-graph is
displayed on the canvas, and the JSON result is displayed in the query result area.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 127

10.6 Shortest Path

Overview
The Shortest Path algorithm is used to find the shortest path between two nodes
in a graph.

Application Scenarios
This algorithm applies to scenarios such as path design and network planning.

Parameter Description

Table 10-6 Shortest Paths algorithm parameters

Paramet
er

Mandat
ory

Description Type Value Range Defau
lt
Value

source Yes Enter the
source ID of
a path.

String - -

target Yes Enter the
target ID of
a path.

String - -

directed No Whether an
edge is
directed

Bool true or false false

weight No Weight of
an edge

String Empty or null character
string
● Empty: The default

weight and distance
are 1.

● Character string: The
attribute of the
corresponding edge is
the weight. When the
edge does not have
corresponding
attribute, the weight
is 1 by default.
NOTE

The weight of an edge
must be greater than
0.

-

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 128

Paramet
er

Mandat
ory

Description Type Value Range Defau
lt
Value

timeWin
dow

No Time
window
used for
time
filtering

Json For details, see Table
10-7.
NOTE

timeWindow does not
support the shortest path
with weight. That is,
parameters timeWindow
and weight cannot be
both specified.

-

Table 10-7 timeWindow parameters

Parame
ter

Man
dator
y

Description Typ
e

Value Range Def
ault
Valu
e

filterNa
me

Yes Name of the time
attribute used for
time filtering

Stri
ng

Character string: The
attribute on the
corresponding vertex/
edge is used as the time.

-

filterTy
pe

No Filtering by vertex or
edge

Stri
ng

V: Filtering by vertex
E: Filtering by edge
BOTH: Filtering by vertex
and edge

BOT
H

startTi
me

No Start time Stri
ng

Date character string or
timestamp

-

endTim
e

No End time Stri
ng

Date character string or
timestamp

-

Precautions
This algorithm only returns one shortest path.

Example
Calculate the shortest path from the Lee node to the Alice node.

Set parameters source to Lee, target to Alice, weight to weights, and directed
to false. The shortest path is displayed on the canvas, and the JSON result is
displayed in the result area.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 129

10.7 All Shortest Paths

Overview

The All Shortest Paths algorithm is used to find all shortest paths between two
nodes in a graph.

Application Scenarios

This algorithm applies to scenarios such as path design and network planning.

Parameter Description

Table 10-8 All Shortest Paths algorithm parameters

Paramet
er

Mandato
ry

Description Type Value
Range

Default
Value

source Yes Enter the
source ID of a
path.

String - -

target Yes Enter the
target ID of a
path.

String - -

directed No Whether an
edge is directed

Bool true or
false

false

Precautions

None

Example

Set parameters source to Lee, target to Alice, and directed to false. The
calculation result is displayed on the canvas and the JSON result is displayed in
the query result area.

10.8 Filtered Shortest Path

Overview

The Filtered Shortest Path algorithm is used to search for the shortest path that
meets the filtering criteria between two vertices. If there are multiple shortest
paths, any one of them is returned.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 130

Application Scenarios

This algorithm applies to path design and network planning. It generates the
shortest path based on vertex and edge filtering criteria.

Parameter Description

Table 10-9 Filtered Shortest Path algorithm parameters

Paramet
er

Mandat
ory

Type Description

source Yes String Enter the source vertex ID of a path.

target Yes String Enter the target vertex ID of a path.

directed No Boole
an

Whether to consider the edge direction The
default value is false.

Precautions

This algorithm only returns one shortest path.

10.9 SSSP

Overview

The SSSP algorithm finds the shortest paths from a specified node (source node)
to all other nodes.

Application Scenarios

This algorithm applies to scenarios such as path design and network planning.

Parameter Description

Table 10-10 SSSP algorithm parameters

Paramet
er

Mandatory Description Type Value Range Default
Value

source Yes Node ID Strin
g

- -

directed No Whether to
consider the
edge direction

Bool true or false true

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 131

Example

Calculate the shortest paths from the Lee node to other nodes.

Set parameters source to Lee and directed to true.

10.10 Shortest Path of Vertex Sets

Overview

The Shortest Path of Vertex Sets algorithm finds the shortest path between two
vertex sets.

Application Scenarios

This algorithm applies to block relationship analysis in Internet social networking,
financial risk control, road network transportation, and logistics delivery scenarios.

Parameter Description

Table 10-11 Shortest Path of Vertex Sets algorithm parameters

Parame
ter

Mandato
ry

Descripti
on

Type Value Range Defa
ult
Value

sources Yes Source
vertex ID
set

String The value is in the standard
CSV format. IDs are
separated by commas (,), for
example, Alice, Nana.
The maximum ID number is
100,000.

-

targets Yes Target
vertex ID
set

String The value is in the standard
CSV format. IDs are
separated by commas (,), for
example, Alice, Nana.
The maximum ID number is
100,000.

-

directed No Whether
an edge
is
directed

Bool true or false false

timeWin
dow

No Time
window
used for
time
filtering

Json For details, see Table 10-12. -

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 132

Table 10-12 timeWindow parameters

Parame
ter

Man
dator
y

Description Typ
e

Value Range Def
ault
Valu
e

filterNa
me

No Name of the time
attribute used for
time filtering

Stri
ng

Character string: The
attribute on the
corresponding vertex/
edge is used as the time.

-

filterTy
pe

No Filtering by vertex or
edge

Stri
ng

V: Filtering by vertex
E: Filtering by edge
BOTH: Filtering by vertex
and edge

BOT
H

startTi
me

No Start time Stri
ng

Date character string or
timestamp

-

endTim
e

No End time Stri
ng

Date character string or
timestamp

-

NO TE

If a vertex ID contains commas (,), add double quotation marks to it. For example, when
Paris, je taime and Alice IDs are used as sources, the ID set is "Paris, je taime",Alice".

Example
Set parameters directed to true, sources to "Alice,Nana", and targets to
"Lily,Amy". The JSON result is displayed in the query result area.

10.11 n-Paths

Overview
The n-Paths algorithm is used to find the n paths between two nodes within the
layers of relationships in a graph.

Application Scenarios
This algorithm applies to scenarios such as relationship analysis, path design, and
network planning.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 133

Parameter Description

Table 10-13 n-Paths algorithm parameters

Paramet
er

Mandator
y

Description Type Value
Range

Default
Value

source Yes Enter the source
ID of a path.

String - -

target Yes Enter the target ID
of a path.

String - -

directed No Whether an edge
is directed

Bool true or
false

false

n No Number of paths Int 1-100 10

k No Number of hops Int 1-10 5

Example
Set parameters source to Lee, target to Alice, n to 10, k to 5, and directed to
false. The calculation result is displayed on the canvas and the JSON result is
displayed in the query result area.

10.12 Closeness Centrality

Overview
Closeness centrality of a node is a measure of centrality in a network, calculated
as the reciprocal of the sum of the length of the shortest paths between the node
and all other reachable nodes in a graph. It can be used to measure the time for
transmitting information from this node to other nodes. The bigger the node's
Closeness Centrality is, the more central the location of the node will be.

Application Scenarios
This algorithm is used in key node mining in social networking.

Parameter Description

Table 10-14 Closeness Centrality algorithm parameters

Paramet
er

Mandato
ry

Description Type Value
Range

Default
Value

source Yes Enter the ID of
the node to be
calculated.

String - -

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 134

Example
Set parameter source to Lee to calculate the closeness centrality of the Lee node.
The JSON result is displayed in the query result area.

10.13 Label Propagation

Overview
The Label Propagation algorithm is a graph-based semi-supervised learning
method. Its basic principle is to predict the label information about unlabeled
nodes using that of the labeled nodes. This algorithm can create graphs based on
the relationships between samples. Nodes include labeled data and unlabeled
data, and the edge indicates the similarity between two nodes. Node labels are
transferred to other nodes based on the similarity. Labeled data is like a source
used to label unlabeled data. The greater the node similarity is, the easier the
label propagation will be.

Application Scenarios
This algorithm applies to scenarios such as information propagation,
advertisement recommendation, and community discovery.

Parameter Description

Table 10-15 Label Propagation algorithm parameters

Paramete
r

Mandato
ry

Descripti
on

Type Value Range Default
Value

convergen
ce

No Converge
nce

Double A real number
between 0 and 1
(excluding 0 and
1)

0.00001

max_itera
tions

No Maximum
iterations

Int 1-2,000 1,000

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 135

Paramete
r

Mandato
ry

Descripti
on

Type Value Range Default
Value

initial No Name of
the
property
used as
the
initializati
on label
on a
vertex

String Null or character
string
● Null: Each

vertex is
allocated with
a unique
initialization
label. This
method is
applicable to
scenarios
where no
vertex label
information
exists.

● Character
string: The
value of the
property field
corresponding
to each vertex
is used as the
initialization
label (the
type is string,
and the
initialization
label field is
set to null for
a vertex with
unknown
labels). This
method is
applicable to
scenarios
where some
vertex labels
are marked to
predict
unknown
vertex labels.

-

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 136

Paramete
r

Mandato
ry

Descripti
on

Type Value Range Default
Value

NOTE
If the value of
initial is not null,
the number of
vertices with
initialization
labels must be
greater than 0
and less than the
total number of
vertices.

Precautions

Label Propagation uses IDs as labels by default.

Example

Set parameters coverage to 0.00001 and max_iterations to 1,000, the sub-graphs
with different labels are displayed on the canvas. The color of a node varies with
labels. The JSON result is displayed in the query result area.

10.14 Louvain

Overview

Louvain is a modularity-based community detection algorithm with high efficiency
and effect. It detects hierarchical community structures and aims to maximize the
modularity of the entire community network.

Application Scenarios

This algorithm applies to scenarios such as community mining and hierarchical
clustering.

Parameter Description

Table 10-16 Louvain algorithm parameters

Parameter Mandat
ory

Description Type Value Range Default
Value

convergen
ce

No Convergence Doubl
e

A real number
between 0 and
1 (excluding 0
and 1)

0.00001

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 137

Parameter Mandat
ory

Description Type Value Range Default
Value

max_iterat
ions

No Maximum
iterations

Int 1-2,000 100

weight No Weight of an
edge

String Empty or null
character string
● Empty: The

default
weight and
distance are
1.

● Character
string: The
attribute of
the
correspondin
g edge is the
weight. When
the edge
does not
have
correspondin
g attribute,
the weight is
1 by default.

NOTE
The weight of an
edge must be
greater than 0.

weight

Precautions

This algorithm generates only the final community result and does not save the
hierarchical results.

Example

Set parameters coverage to 0.00001 and max_iterations to 100, the sub-graphs
of different communities are displayed on the canvas. The color of a node varies
with communities. The JSON result is displayed in the query result area.

10.15 Link Prediction

Overview

This algorithm is used to calculate the similarity between two nodes and predict
their relationship based on the Jaccard measurement method.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 138

Application Scenarios
This algorithm applies to scenarios such as friend recommendation and
relationship prediction in social networks.

Parameter Description

Table 10-17 Link Prediction algorithm parameters

Paramet
er

Mandator
y

Description Type Value Range Default
Value

source Yes Enter the
source ID.

String - -

target Yes Enter the
target ID.

String - -

Example
Set parameters source to Lee and target to Alice to calculate the association
between two nodes. The JSON result is displayed in the query result area.

10.16 Node2vec

Overview
By invoking the Word2vec algorithm, the Node2vec algorithm maps nodes in the
network to the Euclidean space, and uses vectors to represent the node
characteristics.

The Node2vec algorithm generates random steps from each node using the
rollback parameter P and forward parameter Q. It combines BFS and DFS. The
rollback probability is proportional to 1/P, and the forward probability is
proportional to 1/Q. Multiple random steps are generated to reflect the network
structures.

Application Scenarios
This algorithm applies to scenarios such as node function similarity comparison,
structural similarity comparison, and community clustering.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 139

Parameter Description

Table 10-18 Node2vec algorithm parameters

Parame
ter

Mandato
ry

Description Type Value Range Defa
ult
Valu
e

P No Rollback
parameter

Doubl
e

- 1

Q No Forward
parameter

Doubl
e

- 1

dim No Mapping
dimension

Int 1 to 200, including 1
and 200

50

walkLen
gth

No Random walk
length

Int 1 to 100, including 1
and 100

40

walkNu
mber

No Number of
random walk
steps of each
node.

Int 1 to 100, including 1
and 100

10

iteration
s

No Number of
iterations

Int 1 to 100, including 1
and 100

10

Precautions
None

Example
Set parameters P to 1, Q to 0.3, dim to 3, walkLength to 20, walkNumber to 10,
and iterations to 40 to obtain the three-dimensional vector display of each node.

10.17 Real-time Recommendation

Overview
The Real-time Recommendation algorithm is based on the random walk model
and is used to recommend nodes that are similar (have similar relationships or
preferences) to the input node.

Application Scenarios
This algorithm can be used to recommend similar products based on historical
browsing data or recommend potential friends with similar preferences.

It is applicable to scenarios such as e-commerce and social networking.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 140

Parameter Description

Table 10-19 Real-time Recommendation algorithm parameters

Parame
ter

Mandat
ory

Description Type Value Range Defa
ult
Value

sources Yes Node ID. Multiple node
IDs separated by commas
(,) are supported
(standard CSV input
format).

Strin
g

The number
of source
nodes cannot
exceed 30.

-

alpha No Weight coefficient. A
larger value indicates a
longer step.

Dou
ble

A real
number
between 0
and 1
(excluding 0
and 1)

0.85

N No Total number of walk
steps

Int 1-200,000 10,00
0

nv No Parameter indicating that
the walk process ends
ahead of schedule:
minimum number of
access times of a
potential recommended
node
NOTE

If a node is accessed during
random walk and the
number of access times
reaches nv, the node will be
recorded as the potential
recommended node.

Int 1-10 5

np No Parameter indicating that
the walk process ends
ahead of schedule:
number of potential
recommended nodes
NOTE

If the number of potential
recommended nodes of a
source node reaches np, the
random walk for the source
node ends ahead of
schedule.

Int 1-2,000 1000

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 141

Parame
ter

Mandat
ory

Description Type Value Range Defa
ult
Value

label No Expected type of the
vertex to be output.
NOTE

● Expected type of the
vertex to be output. If
the value is null, the
original calculation
result of the algorithm is
output without
considering the vertex
type.

● If the value is not null,
vertices with the label
are filtered from the
calculation result.

Strin
g

Node label -

directed No Whether to consider the
edge direction

Bool true or false true

NO TE

alpha determines the jump probability coefficient, also called damping coefficient, which is
a computing control variable in the algorithm.

Precautions

In the end conditions, the smaller the values of nv and np, the faster the
algorithm ends.

Example

Set parameters sources to Lee, alpha to 0.85, N to 10,000, nv to 5, np to 1,000,
directed to true, and label to null.

The sub-graph formed by top nodes in the calculation result is displayed on the
canvas. The size of a node varies with the final scores. The JSON result is displayed
in the query result area.

10.18 Common Neighbors

Overview

Common Neighbors is a basic graph analysis algorithm that obtains the
neighboring nodes shared by two nodes and further speculate the potential
relationship and similarity between the two nodes. For example, it can intuitively
discover shared friends in social occasions or products that interest both nodes in
the consumption field.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 142

Application Scenarios
This algorithm applies to scenarios such as e-commerce and social networking.

Parameter Description

Table 10-20 Common Neighbors algorithm parameters

Parame
ter

Mandat
ory

Description Type Value Range Default
Value

source Yes Enter the
source ID.

String - -

target Yes Enter the target
ID.

String - -

Precautions
None

Example
Set parameters source to Lee and target to Alice. The calculation result is
displayed on the canvas and the JSON result is displayed in the query result area.

10.19 Connected Component

Overview
A connected component stands for a sub-graph, in which all nodes are connected
with each other. Path directions are involved in the strongly connected
components and are not considered in the weakly connected components. This
algorithm generates weakly connected components.

Parameter Description
None

Example
Run the algorithm to calculate the connected component to which each node
belongs. The JSON result is displayed in the query result area.

10.20 Degree Correlation

Overview
The Degree Correlation algorithm calculates the Pearson correlation coefficient
between the source vertex degree and the target vertex degree of each edge. It is

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 143

used to indicate whether the high-degree nodes are connected to other high-
degree nodes in a graph.

Application Scenarios
This algorithm is often used to measure the structure features of a graph.

Parameter Description
None

Example
Run the algorithm to calculate the degree correlation of a graph. The JSON result
is displayed in the query result area.

10.21 Triangle Count

Overview
The Triangle Count algorithm counts the number of triangles in a graph. More
triangles mean higher node association degrees and closer organization
relationships.

Application Scenarios
This algorithm is often used to measure the structure features of a graph.

Parameter Description
Paramet
er

Manda
tory

Description Type Value Range

statistics No Whether to export only
the total statistical result.
● true: Export only the

statistical result.
● false: Export the

number of triangles
corresponding to each
vertex.

Boolea
n

true or false. The
default value is
true.

Instructions
The edge direction and multi-edge situation are not considered.

Example
Enter statistics = true. The JSON result is displayed in the query result area.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 144

10.22 Clustering Coefficient

Overview
The clustering coefficient is a measure of the degree to which nodes in a graph
tend to cluster together. Evidence suggests that in most real-world networks, and
in particular social networks, nodes tend to create tightly knit groups
characterized by a relatively high density of ties. This algorithm is used to
calculate the aggregation degree of nodes in a graph.

Application Scenarios
This algorithm is often used to measure the structure features of a graph.

Parameter Description
None

Instructions
The multi-edge situation is not considered.

Example
Run the algorithm to calculate the clustering coefficient of a graph. The JSON
result is displayed in the query result area.

10.23 Betweenness Centrality

Overview
Betweenness centrality is a measure of centrality in a graph based on shortest
paths. This algorithm calculates shortest paths that pass through a vertex.

Application Scenarios
The Betweenness Centrality algorithm can be used for tracing man-in-the-middle
in social networks and risk control networks and identifying key vertices in
transportation networks. This algorithm is widely used for social networking,
financial risk control, transportation networking, and city planning.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 145

Parameter Description

Table 10-21 Algorithm parameters

Parame
ter

Manda
tory

Descriptio
n

Type Value Range Default
Value

directed No Whether
an edge is
directed

Boolean The value can be true
or false.

true

weight No Weight of
an edge

String The value can be an
empty string. If this
parameter is left blank,
the weight and distance
of this edge are 1 by
default. You can set this
parameter to a property
of the edge, and the
property value will be
the weight. If the edge
does not have the
specified property, the
weight is 1 by default.
NOTE

The weight of an edge
must be greater than 0.

-

seeds No Vertex ID String If the graph is large,
betweenness
calculation can be slow.
You can set seeds to
the sampling nodes for
approximate
calculation. The more
seeds nodes, the closer
results to the accurate
calculation. The
number of vertices
cannot be greater than
100,000.

-

k No Number
of
samples

Integer If the graph is large,
betweenness
calculation can be slow.
You can set k to
randomly select k
sampling vertices from
the graph. The larger
value, the closer results
to the accurate
calculation. The value
cannot be greater than
100,000.

-

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 146

NO TE

When you perform approximate betweenness calculation, either seeds or k must be
specified. If both are specified, seeds vertices will be sampled by default and k will be
ignored.

Precautions
None

Example
Set weight="length", directed=true, seeds ="Lee,Alice" and view the result.

10.24 Edge Betweenness Centrality

Overview
The Edge Betweenness Centrality algorithm calculates shortest paths that pass
through an edge.

Application Scenarios
The Edge Betweenness Centrality algorithm can be used for key relationship
mining. It is applicable to social networking, financial risk control, transportation
networking, and city planning.

Parameter Description

Table 10-22 Algorithm parameters

Parame
ter

Manda
tory

Descriptio
n

Type Value Range Default
Value

directed No Whether
an edge is
directed

Boolean The value can be true
or false.

true

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 147

Parame
ter

Manda
tory

Descriptio
n

Type Value Range Default
Value

weight No Weight of
an edge

String The value can be an
empty string. If this
parameter is left blank,
the weight and distance
of this edge are 1 by
default. You can set this
parameter to a property
of the edge, and the
property value will be
the weight. If the edge
does not have the
specified property, the
weight is 1 by default.
NOTE

The weight of an edge
must be greater than 0.

-

seeds No Vertex ID String If the graph is large,
betweenness
calculation can be slow.
You can set seeds to
the sampling nodes for
approximate
calculation. The more
seeds nodes, the closer
results to the accurate
calculation. The
number of vertices
cannot be greater than
100,000.

-

k No Number
of
samples

Integer If the graph is large,
betweenness
calculation can be slow.
You can set k to
randomly select k
sampling vertices from
the graph. The larger
value, the closer results
to the accurate
calculation. The value
cannot be greater than
100,000.

-

NO TE

When you perform approximate edge-betweenness calculation, either seeds or k must be
specified. If both are specified, seeds vertices will be sampled by default and k will be
ignored.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 148

Precautions

None

Example

Set weight="length", directed=true, seeds ="Lee,Alice" and view the result.

10.25 Origin-Destination Betweenness Centrality

Overview

The Origin-Destination Betweenness Centrality algorithm calculates shortest paths
that pass through a vertex/edge, with the origin and destination (OD) specified.

Application Scenarios

OD Betweenness Centrality can be used for tracing man-in-the-middle in social
networks and risk control networks and identifying key vertices in transportation
networks. It is suitable for simulating busy transportation sections during peak
hours. It is also widely used for social networking, financial risk control,
transportation networking, and city planning.

Parameter Description

Table 10-23 Algorithm parameters

Parame
ter

Manda
tory

Descriptio
n

Type Value Range Default
Value

directed No Whether
an edge is
directed

Boole
an

The value can be true or
false.

true

weight No Weight of
an edge

String The value can be an
empty string. If this
parameter is left blank,
the weight and distance
of this edge are 1 by
default. You can set this
parameter to a property
of the edge, and the
property value will be the
weight. If the edge does
not have the specified
property, the weight is 1
by default.
NOTE

The weight of an edge must
be greater than 0.

-

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 149

Parame
ter

Manda
tory

Descriptio
n

Type Value Range Default
Value

OD_pai
rs

No Pairs of
OD
vertices

String The value must be in the
standard CSV format. The
start vertex (origin) and
end vertex (destination)
are separated by commas
(,), and the start and end
vertex pairs are separated
by newline characters
(\n), for example,
Alice,Nana\nLily,Amy.

-

seeds No ID of the
hot spot
vertex

String Data that will be
imported when the data
of OD vertex pairs is
unknown. The value is in
the standard CSV format.
IDs are separated by
commas (,), for example,
Alice, Nana. A maximum
of 30 IDs are allowed.

-

modes No Hot spot
vertex type

String ● IN: The hot spot vertex
ID is used as the start
vertex ID.

● OUT: The hot spot
vertex ID is used as the
end vertex ID.

-

attende
es

No Number of
participant
s at each
hot spot in
seeds

String The value is in the
standard CSV format.
Numbers are separated by
commas (,), for example,
10,20. The value ranges
from 1 to 1,000,000.

-

NO TE

When you perform approximate OD-Betweenness calculation, either OD_pairs or seeds
must be specified. If both are specified, the OD_pairs vertices will be used for calculation by
default and seeds will be ignored.

Precautions
None

Example
Ser weight=length, directed=true, OD = Alice,Nana\nLily,Amy and view the
result.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 150

10.26 Circle Detection with a Single Vertex

Overview

This algorithm solves a classic graph problem: detecting loops in a graph. The
vertices on a loop (circle) are import.

Application Scenarios

This algorithm is widely used for transportation networking and financial risk
control.

Parameter Description

Table 10-24 Algorithm parameters

Parameter Man
dato
ry

Description Type Value
Range

Default
Value

source Yes ID of the given
vertex

String - -

min_circle_le
ngth

No Minimum circle
length

Int [3,15] 3

max_circle_le
ngth

No Maximum circle
length. The
value must be
bigger than
min_circle_len
gth.

Int [3,15] 10

limit_circle_n
umber

No Maximum
number of
circles you want
to search for

Int [1,100000] 100

10.27 Common Neighbors of Vertex Sets

Overview

The Common Neighbors of Vertex Sets algorithm can find common neighbors of
two vertex sets, and intuitively discover an object jointly associated with both sets,
for example, a common friend in a social occasion, a product that is of common
interest, a person who has been contacted by community groups. In this way, the
algorithm infers the potential relationship and degree of association between the
vertex sets.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 151

Application Scenarios

This algorithm applies to graph analysis such as relationship mining and product/
friend recommendations.

Parameter Description

Table 10-25 Common Neighbors of Vertex Sets algorithm parameters

Parameter Mand
atory

Descripti
on

Type Value Range Default
Value

sources Yes Source
vertex ID
set

String The value is in the
standard CSV
format. IDs are
separated by
commas (,), for
example, Alice,
Nana.
The maximum ID
number is 100,000.

-

targets Yes Target
vertex ID
set

String The value is in the
standard CSV
format. IDs are
separated by
commas (,), for
example, Alice,
Nana.
The maximum ID
number is 100,000.

-

Precautions

None

Example

Enter sources=Alice,Nana and targets=Mike,Amy. The calculation result is
displayed on the canvas and the JSON result is displayed in the query result area.

10.28 All Shortest Paths of Vertex Sets

Overview

The Shortest Path of Vertex Sets algorithm finds the shortest path between vertex
sets.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 152

Application Scenarios
This algorithm can be used to analyze relationships between blocks in scenarios
such as Internet social networking, financial risk control, road network traffic, and
logistics delivery.

Parameter Description

Table 10-26 All Shortest Paths of Vertex Sets algorithm parameters

Param
eter

Man
dato
ry

Descripti
on

Type Value Range Default Value

sources Yes Source
vertex ID
set

Strin
g

The value is in the
standard CSV format.
IDs are separated by
commas (,), for
example, Alice, Nana.
The maximum ID
number is 100,000.

-

targets Yes Target
vertex ID
set

Strin
g

The value is in the
standard CSV format.
IDs are separated by
commas (,), for
example, Alice, Nana.
The maximum ID
number is 100,000.

-

directe
d

No Whether
to
consider
the edge
direction

Boole
an

true or false. It is a
Boolean value.

false

Precautions
If a vertex ID contains commas (,), add double quotation marks to it. For example,
when Paris, je taime and Alice IDs are used as sources, the ID set is "Paris, je
taime",Alice".

Example
Set parameters directed to true, sources to "Alice,Nana", and targets to
"Lily,Amy". The JSON result is displayed in the query result area.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 153

10.29 Filtered Circle Detection

Overview

The Filtered Circle Detection algorithm finds all circles that meet the filter criteria.

Application Scenarios

The Filtered Circle Detection algorithm is applicable to scenarios such as cyclic
transfer detection and anti-money laundering in financial risk control, abnormal
connection detection in network routing, and loan risk identification in enterprise
guarantee circles.

Parameter Description

Table 10-27 Parameter description

Paramet
er

Ma
nda
tor
y

Description Type Value Range Default
Value

sources No Set of source
vertex IDs to be
queried

Strin
g

- The value
is in the
standard
CSV
format. IDs
are
separated
by commas
(,), for
example,
Alice,
Nana.

n No Upper limit of the
number of
enumerated circles
that meet the
filter criteria

Int [1,100000] 100

statistics No Whether to export
the number of
circles that meet
the filter criteria

Bool
ean

true or false false

batch_nu
mber

No Number of source
vertices for batch
processing

Int [1,1000] 10

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 154

Paramet
er

Ma
nda
tor
y

Description Type Value Range Default
Value

output_f
ormat

No Output format Strin
g

vertexId, edgeId,
or edgeObject

edgeObject

filters Yes Filter criteria. Each
element in the
array corresponds
to the filter criteria
of each layer.

Json - -

10.30 Subgraph Matching

Overview
The subgraph matching algorithm is used to find all subgraphs of a given small
graph that is isomorphic to a given large graph. This is a basic graph query
operation and is intended to explore important substructures of a graph.

Application Scenarios
This algorithm is applicable to fields such as social network analysis,
bioinformatics, transportation, crowd discovery, and anomaly detection.

Parameter Description

Table 10-28 Subgraph matching parameters

Name Manda
tory

Description Type Value Range

edges Yes Edge set of the
subgraph to be
matched. The vertex
ID must be a non-
negative integer.

String The value is in
standard CSV format.
The start and end
vertices of an edge are
separated by a comma
(,), and edges are
separated by a newline
character (\n). For
example, 1,2\n2,3.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 155

Name Manda
tory

Description Type Value Range

vertices Yes Label of each vertex
on the subgraph to
be matched.

String The value is in
standard CSV format.
Vertices and their
labels are separated by
commas (,), and labels
are separated by
newline characters
(\n). For example, 1,BP
\n2,FBP\n3,CP.

directed No Whether the graph is
directed

Bool The value can be true
or false. The default
value is true.

n No Maximum number of
subgraphs to be
searched for

Int The value range is
[1,100000]. The
default value is 100.

batch_num
ber

No Number of queries
processed in batches
each time

Int The value range is
[1,1000000]. The
default value is 10000.

statistics No Whether to display
the number of all
subgraphs that meet
the conditions

Bool The value can be true
or false. The default
value is false.

10.31 Filtered All Pairs Shortest Paths

Overview
The Filtered All Pairs Shortest Paths algorithm is used to search for the shortest
path between any two vertices in the graph that meets the condition. In a specific
application scenario, you need to set a start vertex set (sources) and end vertex
set (targets) as input for this algorithm. This algorithm returns the required
shortest paths between the start and the end vertex sets.

Application Scenarios
This algorithm applies to relationship mining, path planning, and network
planning.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 156

Parameter Description

Table 10-29 Filtered All Pairs Shortest Paths algorithm parameters

Name Mand
atory

Description Type Value Range Default

sources Yes Set of start
vertex IDs.
The value is
in the
standard
CSV input
format, that
is, multiple
vertex IDs
are
separated by
commas (,).

Strin
g

The number of source
vertices cannot exceed
10,000.
-

-

targets Yes Set of end
vertex IDs.
The value is
in the
standard
CSV input
format, that
is, multiple
vertex IDs
are
separated by
commas (,).

Strin
g

The number of target
vertices cannot exceed
10,000.
-

-

directed No Whether the
edges are
directed

Bool The value can be true
or false.

-

cutoff No Maximum
length

Int 1-100 6

path_lim
it

No Maximum
number of
paths

Int ● For synchronous
tasks:

The value ranges from
1 to 100000. The
default value is
100000.
● For asynchronous

tasks:
The value ranges from
1 to 1000000. The
default value is
1000000.
1000000

100000/10
00000

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 157

Example

Configure the parameters as follows: directed=true, sources="Alice,Vivian",
targets="Jay,Bonnie", and set the edge search condition labelName=friends. The
shortest paths between each pair of start and end vertices are returned in JSON
format.

10.32 Filtered All Shortest Paths

Overview

The Filtered All Shortest Paths algorithm allows you to search query results of the
Shortest Path algorithm for the paths that meet the conditions between two
vertices in a graph.

Application Scenarios

This algorithm applies to scenarios such as relationship mining, path planing, and
network planning.

Parameter Description

Table 10-30 Filtered All Shortest Paths algorithm parameters

Paramete
r

Mand
atory

Descrip
tion

Type Value
Range

Default Value

source Yes Source
vertex
ID

String - -

target Yes Target
vertex
ID

String - -

directed No Whethe
r an
edge is
directed

Bool The value
can be true
or false.

false

Example

Configure the parameters as follows: directed=true, source="Alice",
target="Jay", and set the search condition to labelName=friends. The results are
returned in JSON format.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 158

10.33 TopicRank

Overview

TopicRank algorithm is one of commonly used algorithms for ranking topics by
multiple dimensions.

Application Scenarios

This algorithm is applicable to rank hot topics. For example, it can be used to rank
complaint topics obtained through a government hotline.

Parameter Description

Table 10-31 TopicRank algorithm parameters

Name Ma
nda
tor
y

Description Type Value Range Default

sources Yes Vertex ID. You can
specify multiple
IDs in CSV format
and separate them
with commas (,).

Strin
g

Currently, a
maximum of
100000 IDs are
allowed.

-

actived_p No Initial weight of
the source vertices

Dou
ble

The value ranges
from 0 to 100000.

1

default_p No Initial weight of a
non-source
vertices

Dou
ble

The value ranges
from 0 to 100000.

1

filtered No Whether to filter
results

Bool
ean

The value can be
true or false.

false

only_neig
hbors

No Whether to display
only the
neighboring
vertices of the
sources

Bool
ean

The value can be
true or false.

false

alpha No Weight coefficient Real
num
ber

A real number
between 0 and 1

0.85

converge
nce

No Convergence Real
num
ber

A real number
between 0 and 1

0.00001

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 159

Name Ma
nda
tor
y

Description Type Value Range Default

max_iter
ations

No Maximum
iterations

Posit
ive
integ
er

The value ranges
from 1 to 2000.

1000

directed No Whether the edges
are directed

Bool
ean

The value can be
true or false.

true

num_thr
ead

No Number of threads Posit
ive
integ
er

1-40 4

Example

Configure
sources="20190110004349,20190129023326,20190107003294,20190129023391
", filtered = true, only_neighbors=true, alpha=0.85, convergence=0.00001,
max_iterations=1000, directed=true, and label="Topic" to obtain the topic
ranking result.

10.34 Filtered n-Paths

Overview

The filtered n-Paths algorithm is used to find no more than n k-hop loop-free
paths between the source and target vertices. The start vertex (source), end vertex
(target), number of hops (k), number of paths (n), and filter criteria (filters) are
the parameters for the algorithm.

Application Scenarios

Any network

Parameter Description

Table 10-32 filtered_n_paths parameters

Parameter Mandato
ry

Descripti
on

Type Value
Range

Default Value

source Yes Source
vertex

String Internal
vertices

None

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 160

Parameter Mandato
ry

Descripti
on

Type Value
Range

Default Value

target Yes Target
vertex

String Internal
vertices

None

k Yes Number
of hops

Int [2,6] 2

n Yes Number
of paths

Int [1,1000] 1

10.35 Temporal Paths

Overview
Different from path analysis on static graphs, the Temporal Paths algorithm
combines the order of information transmission on dynamic graphs. The passing
time of an edge on a path must be later than or the same as that of the previous
edge, showing the increment (or non-decrement) of time.

● Temporal paths do not meet transitivity: If there is one temporal path from
the vertex i to the vertex j, and there is one temporal path from the vertex j to
the vertex k, it does not indicate that there is one temporal path from the
vertex i to the vertex k. So, in terms of solving a problem, solving a path on a
dynamic graph is more complex than on a static graph, and the calculation is
much more difficult. However, temporal path analysis is widely used in actual
life, for example, calculating a travel route and simulating/searching for an
information propagation path.

● Temporal Paths can be classified into Shortest, Foremost, and Fastest
Temporal Paths based on the problem-solving objective.
– Shortest Temporal Paths: indicates the temporal path with the shortest

distance.
– Foremost Temporal Paths: indicates the temporal path that reaches the

target node as early as possible.
– Fastest Temporal Paths: indicates the temporal path that takes the

shortest time.

Application Scenarios
It is applicable to scenarios such as epidemic or disease transmission source
tracing, information transmission and public opinion analysis, time sequence-
based path planning, and fund circulation path.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 161

Parameter Description

Table 10-33 Temporal Paths parameters

Parameter Mand
atory

Descriptio
n

Type Value Range Default
Value

source Yes Source
vertex ID

String - -

targets Yes Target
vertex ID
set

String The value is in CSV
format. IDs are
separated by commas
(,), for example,
Alice,Nana. The
number of IDs cannot
exceed 100,000.

1000

directed No Whether
an edge is
directed

Boolea
n

The value can be true
or false.

false

k No Maximum
depth

Integer 1 to 100, including 1
and 100

3

strategy No Algorithm
policy

String The value can be
shortest, foremost, or
fastest.
(Note: fastest is not
supported currently.)

● shortest: Runs the
shortest temporal
paths algorithm to
return the temporal
path with the
shortest distance.

● foremost: Runs the
foremost temporal
paths algorithm to
return the temporal
path that reaches
the target node as
early as possible.

● fastest: Runs the
fastest temporal
paths algorithm to
return the temporal
path that takes the
shortest time.

shortes
t

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 162

Table 10-34 dynamicRange description

Paramete
r

Mandat
ory

Descriptio
n

Type Value Range Defau
lt
Value

start Yes Start time
for
dynamic
analysis

Date/Integer - -

end Yes End time
for
dynamic
analysis

Date/Integer - -

time_prop
s

Yes Time
properties
for
dynamic
analysis

Object - -

Table 10-35 time_props description

Paramete
r

Mand
atory

Description Type Value Range Defau
lt
Value

stime Yes Name of
the start
time
property

String - -

etime Yes Name of
the end
time
property

String - -

Precautions
Temporal path analysis needs to be performed on dynamic graphs.

Example
Select the algorithm in the algorithm area of the graph engine editor. For details,
see Analyzing Graphs Using Algorithms.

1. To set the dynamic time range parameters, run the following command:
start=1646092800, end =1646170716, stime="startTime", etime="endTime"

2. Set the parameters of the temporal paths algorithm.
source="Person00014"

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 163

targets="Person00055,Person00058,Person00052,Person00061,Person00060,Pl
ace00032,Place00016,Place00026,Place00015,Place00043"
directed="false"
k="5"

3. Select the algorithm search policy shortest or foremost. Click Run to run the
temporal paths algorithm. The graph engine calculates and returns the
temporal analysis path based on the selected algorithm search policy. The
path dynamically extends with the time axis until it reaches the target node.
The JSON results are displayed in the query result area.

Graph Engine Service
User Guide 10 Algorithms

2024-11-30 164

	Contents
	1 GES Overview
	2 Permissions Management
	2.1 Creating a User
	2.2 Policy Permissions
	2.2.1 Policy
	2.2.2 System-Defined Policies
	2.2.3 Custom Policies

	2.3 Role Permissions

	3 Metadata Operations
	3.1 Graph Data Formats
	3.1.1 Static Graph

	3.2 Importing a Metadata File
	3.2.1 Preparing Metadata
	3.2.2 Importing Data From a Local Path or OBS

	3.3 Creating a Metadata File
	3.4 Copying a Metadata File
	3.5 Editing a Metadata File
	3.6 Searching for a Metadata File
	3.7 Deleting a Metadata File

	4 Creating Graphs
	4.1 Methods to Create a Graph
	4.2 Creating a Custom Graph
	4.3 Creating a Dynamic Graph
	4.4 Starting a Graph
	4.5 Stopping a Graph
	4.6 Accessing Graphs
	4.7 Importing Incremental Data

	5 Managing Graphs
	5.1 Graph Management Overview
	5.2 Viewing a Failed Graph
	5.3 Backing Up and Restoring Graphs
	5.3.1 Backing Up a Graph
	5.3.2 Restoring a Graph
	5.3.3 Deleting a Backup
	5.3.4 Exporting a Backup to OBS
	5.3.5 Importing a Backup from OBS

	5.4 Upgrading a Graph
	5.5 Exporting a Graph
	5.6 Restarting a Graph
	5.7 Resizing a Graph
	5.8 Expanding a Graph
	5.9 Binding and Unbinding an EIP
	5.10 Clearing Data
	5.11 Deleting a Graph
	5.12 Viewing Monitoring Metrics
	5.13 Querying Schema

	6 Accessing and Analyzing Graph Data
	6.1 Graph Editor
	6.2 Accessing the GES Graph Editor
	6.3 Dynamic Graphs
	6.3.1 Timeline
	6.3.2 Community Evolution
	6.3.3 Temporal BFS
	6.3.4 Temporal Paths

	6.4 Graph Exploration
	6.5 Multi-Graph Management (Database Edition)
	6.6 Adding Custom Operations
	6.7 Editing Schema
	6.8 Visual Query
	6.9 Gremlin Query
	6.10 Cypher Query
	6.11 DSL Query
	6.12 Analyzing Graphs Using Algorithms
	6.13 Analyzing Graphs on the Canvas
	6.14 Graph Display in 3D View
	6.15 Filter Criteria
	6.16 Editing Properties
	6.17 Statistics Display
	6.18 View Running Records
	6.19 Viewing Query Results

	7 Viewing Graph Tasks
	7.1 Graph Overview
	7.2 Task Center
	7.2.1 Management Plane Task Center
	7.2.2 Service Plane Task Center

	7.3 Managing Connections

	8 Configuring Permissions
	8.1 Configuring Granular Permissions
	8.2 User Groups
	8.3 User Details

	9 O&M Monitoring and Alarm Reporting
	9.1 Monitoring Metrics
	9.2 Graph Instance O&M Monitoring
	9.3 Monitoring
	9.3.1 Nodes
	9.3.2 Performance
	9.3.3 Real-Time Queries
	9.3.4 Historical Queries

	9.4 Monitoring Clusters Using Cloud Eye

	10 Algorithms
	10.1 Algorithm List
	10.2 PageRank
	10.3 PersonalRank
	10.4 K-core
	10.5 K-hop
	10.6 Shortest Path
	10.7 All Shortest Paths
	10.8 Filtered Shortest Path
	10.9 SSSP
	10.10 Shortest Path of Vertex Sets
	10.11 n-Paths
	10.12 Closeness Centrality
	10.13 Label Propagation
	10.14 Louvain
	10.15 Link Prediction
	10.16 Node2vec
	10.17 Real-time Recommendation
	10.18 Common Neighbors
	10.19 Connected Component
	10.20 Degree Correlation
	10.21 Triangle Count
	10.22 Clustering Coefficient
	10.23 Betweenness Centrality
	10.24 Edge Betweenness Centrality
	10.25 Origin-Destination Betweenness Centrality
	10.26 Circle Detection with a Single Vertex
	10.27 Common Neighbors of Vertex Sets
	10.28 All Shortest Paths of Vertex Sets
	10.29 Filtered Circle Detection
	10.30 Subgraph Matching
	10.31 Filtered All Pairs Shortest Paths
	10.32 Filtered All Shortest Paths
	10.33 TopicRank
	10.34 Filtered n-Paths
	10.35 Temporal Paths

